A153521
Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + 11*T(n-2, k-1), read by rows.
Original entry on oeis.org
2, 11, 11, 2, 238, 2, 2, 1329, 1329, 2, 2, 1353, 5276, 1353, 2, 2, 1377, 21248, 21248, 1377, 2, 2, 1401, 37508, 100532, 37508, 1401, 2, 2, 1425, 54056, 371768, 371768, 54056, 1425, 2, 2, 1449, 70892, 838412, 1849388, 838412, 70892, 1449, 2, 2, 1473, 88016, 1503920, 6777248, 6777248, 1503920, 88016, 1473, 2
Offset: 1
Triangle begins as:
2;
11, 11;
2, 238, 2;
2, 1329, 1329, 2;
2, 1353, 5276, 1353, 2;
2, 1377, 21248, 21248, 1377, 2;
2, 1401, 37508, 100532, 37508, 1401, 2;
2, 1425, 54056, 371768, 371768, 54056, 1425, 2;
2, 1449, 70892, 838412, 1849388, 838412, 70892, 1449, 2;
2, 1473, 88016, 1503920, 6777248, 6777248, 1503920, 88016, 1473, 2;
Sequences with variable (p,q,j):
A153516 (0,1,2),
A153518 (0,1,3),
A153520 (0,1,4), this sequence (0,1,5),
A153648 (1,0,3),
A153649 (1,1,4),
A153650 (1,4,5),
A153651 (1,5,6),
A153652 (2,1,7),
A153653 (2,1,8),
A153654 (2,1,9),
A153655 (2,1,10),
A153656 (2,3,9),
A153657 (2,7,10).
-
f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
function T(n,k,p,q,j)
if n eq 2 then return NthPrime(j);
elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
elif (k eq 1 or k eq n) then return 2;
else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j);
end if; return T;
end function;
[T(n,k,0,1,5): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 04 2021
-
T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]];
Table[T[n,k,0,1,5], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 04 2021 *)
-
@CachedFunction
def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
def T(n,k,p,q,j):
if (n==2): return nth_prime(j)
elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
elif (k==1 or k==n): return 2
else: return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j)
flatten([[T(n,k,0,1,5) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 04 2021
A153516
Triangle T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p,q,j) with T(2,k,p,q,j) = prime(j) and (p,q,j) = (0,1,2), read by rows.
Original entry on oeis.org
2, 3, 3, 2, 14, 2, 2, 25, 25, 2, 2, 33, 92, 33, 2, 2, 41, 200, 200, 41, 2, 2, 49, 340, 676, 340, 49, 2, 2, 57, 512, 1616, 1616, 512, 57, 2, 2, 65, 716, 3148, 5260, 3148, 716, 65, 2, 2, 73, 952, 5400, 13256, 13256, 5400, 952, 73, 2
Offset: 1
Triangle begins as:
2;
3, 3;
2, 14, 2;
2, 25, 25, 2;
2, 33, 92, 33, 2;
2, 41, 200, 200, 41, 2;
2, 49, 340, 676, 340, 49, 2;
2, 57, 512, 1616, 1616, 512, 57, 2;
2, 65, 716, 3148, 5260, 3148, 716, 65, 2;
2, 73, 952, 5400, 13256, 13256, 5400, 952, 73, 2;
Sequences with variable (p,q,j): this sequence (0,1,2),
A153518 (0,1,3),
A153520 (0,1,4),
A153521 (0,1,5),
A153648 (1,0,3),
A153649 (1,1,4),
A153650 (1,4,5),
A153651 (1,5,6),
A153652 (2,1,7),
A153653 (2,1,8),
A153654 (2,1,9),
A153655 (2,1,10),
A153656 (2,3,9),
A153657 (2,7,10).
-
f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
function T(n,k,p,q,j)
if n eq 2 then return NthPrime(j);
elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
elif (k eq 1 or k eq n) then return 2;
else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j);
end if; return T;
end function;
[T(n,k,0,1,2): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 03 2021
-
T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]];
Table[T[n,k,0,1,2], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 03 2021 *)
-
@CachedFunction
def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
def T(n,k,p,q,j):
if (n==2): return nth_prime(j)
elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
elif (k==1 or k==n): return 2
else: return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j)
flatten([[T(n,k,0,1,2) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 03 2021
A153518
Triangular T(n,k) = T(n-1, k) + T(n-1, k-1) + 5*T(n-2, k-1), read by rows.
Original entry on oeis.org
2, 5, 5, 2, 46, 2, 2, 123, 123, 2, 2, 135, 476, 135, 2, 2, 147, 1226, 1226, 147, 2, 2, 159, 2048, 4832, 2048, 159, 2, 2, 171, 2942, 13010, 13010, 2942, 171, 2, 2, 183, 3908, 26192, 50180, 26192, 3908, 183, 2, 2, 195, 4946, 44810, 141422, 141422, 44810, 4946, 195, 2
Offset: 1
Triangle begins as:
2;
5, 5;
2, 46, 2;
2, 123, 123, 2;
2, 135, 476, 135, 2;
2, 147, 1226, 1226, 147, 2;
2, 159, 2048, 4832, 2048, 159, 2;
2, 171, 2942, 13010, 13010, 2942, 171, 2;
2, 183, 3908, 26192, 50180, 26192, 3908, 183, 2;
2, 195, 4946, 44810, 141422, 141422, 44810, 4946, 195, 2;
Sequences with variable (p,q,j):
A153516 (0,1,2), this sequences (0,1,3),
A153520 (0,1,4),
A153521 (0,1,5),
A153648 (1,0,3),
A153649 (1,1,4),
A153650 (1,4,5),
A153651 (1,5,6),
A153652 (2,1,7),
A153653 (2,1,8),
A153654 (2,1,9),
A153655 (2,1,10),
A153656 (2,3,9),
A153657 (2,7,10).
-
f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
function T(n,k,p,q,j)
if n eq 2 then return NthPrime(j);
elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
elif (k eq 1 or k eq n) then return 2;
else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j);
end if; return T;
end function;
[T(n,k,0,1,3): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 04 2021
-
A153518 := proc(n,k) option remember ; if n =1 then 2; elif n = 2 then 5; elif k=1 or k=n then 2; elif n = 3 then 46 ; elif n = 4 then 123 ; else procname(n-1,k-1)+procname(n-1,k)+5*procname(n-2,k-1) ; end: end: for n from 1 to 13 do for k from 1 to n do printf("%d,",A153518(n,k)) ; od: od: # R. J. Mathar, Jan 22 2009
-
T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]];
Table[T[n,k,0,1,3], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 04 2021 *)
-
@CachedFunction
def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
def T(n,k,p,q,j):
if (n==2): return nth_prime(j)
elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
elif (k==1 or k==n): return 2
else: return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j)
flatten([[T(n,k,0,1,3) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 04 2021
A153648
Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + j*prime(j)*T(n-2, k-1) with j=3, read by rows.
Original entry on oeis.org
2, 5, 5, 2, 46, 2, 2, 123, 123, 2, 2, 155, 936, 155, 2, 2, 187, 2936, 2936, 187, 2, 2, 219, 5448, 19912, 5448, 219, 2, 2, 251, 8472, 69400, 69400, 8472, 251, 2, 2, 283, 12008, 159592, 437480, 159592, 12008, 283, 2, 2, 315, 16056, 298680, 1638072, 1638072, 298680, 16056, 315, 2
Offset: 1
Triangle begins as:
2;
5, 5;
2, 46, 2;
2, 123, 123, 2;
2, 155, 936, 155, 2;
2, 187, 2936, 2936, 187, 2;
2, 219, 5448, 19912, 5448, 219, 2;
2, 251, 8472, 69400, 69400, 8472, 251, 2;
2, 283, 12008, 159592, 437480, 159592, 12008, 283, 2;
2, 315, 16056, 298680, 1638072, 1638072, 298680, 16056, 315, 2;
Sequences with variable (p,q,j):
A153516 (0,1,2),
A153518 (0,1,3),
A153520 (0,1,4),
A153521 (0,1,5), this sequence (1,0,3),
A153649 (1,1,4),
A153650 (1,4,5),
A153651 (1,5,6),
A153652 (2,1,7),
A153653 (2,1,8),
A153654 (2,1,9),
A153655 (2,1,10),
A153656 (2,3,9),
A153657 (2,7,10).
-
f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
function T(n,k,p,q,j)
if n eq 2 then return NthPrime(j);
elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
elif (k eq 1 or k eq n) then return 2;
else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j);
end if; return T;
end function;
[T(n,k,1,0,3): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 04 2021
-
T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]];
Table[T[n,k,1,0,3], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 04 2021 *)
-
@CachedFunction
def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
def T(n,k,p,q,j):
if (n==2): return nth_prime(j)
elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
elif (k==1 or k==n): return 2
else: return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j)
flatten([[T(n,k,1,0,3) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 04 2021
A153649
Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + (j+1)*prime(j)*T(n-2, k-1) with j=4, read by rows.
Original entry on oeis.org
2, 7, 7, 2, 94, 2, 2, 341, 341, 2, 2, 413, 3972, 413, 2, 2, 485, 16320, 16320, 485, 2, 2, 557, 31260, 171660, 31260, 557, 2, 2, 629, 48792, 774120, 774120, 48792, 629, 2, 2, 701, 68916, 1917012, 7556340, 1917012, 68916, 701, 2, 2, 773, 91632, 3693648, 36567552, 36567552, 3693648, 91632, 773, 2
Offset: 1
Triangle begins as:
2;
7, 7;
2, 94, 2;
2, 341, 341, 2;
2, 413, 3972, 413, 2;
2, 485, 16320, 16320, 485, 2;
2, 557, 31260, 171660, 31260, 557, 2;
2, 629, 48792, 774120, 774120, 48792, 629, 2;
2, 701, 68916, 1917012, 7556340, 1917012, 68916, 701, 2;
2, 773, 91632, 3693648, 36567552, 36567552, 3693648, 91632, 773, 2;
Sequences with variable (p,q,j):
A153516 (0,1,2),
A153518 (0,1,3),
A153520 (0,1,4),
A153521 (0,1,5),
A153648 (1,0,3), this sequence (1,1,4),
A153650 (1,4,5),
A153651 (1,5,6),
A153652 (2,1,7),
A153653 (2,1,8),
A153654 (2,1,9),
A153655 (2,1,10),
A153656 (2,3,9),
A153657 (2,7,10).
-
f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
function T(n,k,p,q,j)
if n eq 2 then return NthPrime(j);
elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
elif (k eq 1 or k eq n) then return 2;
else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j);
end if; return T;
end function;
[T(n,k,1,1,4): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 04 2021
-
T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]];
Table[T[n,k,1,1,4], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 04 2021 *)
-
@CachedFunction
def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
def T(n,k,p,q,j):
if (n==2): return nth_prime(j)
elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
elif (k==1 or k==n): return 2
else: return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j)
flatten([[T(n,k,1,1,4) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 04 2021
A153650
Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + (j+4)*prime(j)*T(n-2, k-1) with j=5, read by rows.
Original entry on oeis.org
2, 11, 11, 2, 238, 2, 2, 1329, 1329, 2, 2, 1529, 26220, 1529, 2, 2, 1729, 159320, 159320, 1729, 2, 2, 1929, 312420, 2914420, 312420, 1929, 2, 2, 2129, 485520, 18999520, 18999520, 485520, 2129, 2, 2, 2329, 678620, 50414620, 326526620, 50414620, 678620, 2329, 2
Offset: 1
Triangle begins as:
2;
11, 11;
2, 238, 2;
2, 1329, 1329, 2;
2, 1529, 26220, 1529, 2;
2, 1729, 159320, 159320, 1729, 2;
2, 1929, 312420, 2914420, 312420, 1929, 2;
2, 2129, 485520, 18999520, 18999520, 485520, 2129, 2;
2, 2329, 678620, 50414620, 326526620, 50414620, 678620, 2329, 2;
2, 2529, 891720, 99159720, 2257893720, 2257893720, 99159720, 891720, 2529, 2;
Sequences with variable (p,q,j):
A153516 (0,1,2),
A153518 (0,1,3),
A153520 (0,1,4),
A153521 (0,1,5),
A153648 (1,0,3),
A153649 (1,1,4), this sequence (1,4,5),
A153651 (1,5,6),
A153652 (2,1,7),
A153653 (2,1,8),
A153654 (2,1,9),
A153655 (2,1,10),
A153656 (2,3,9),
A153657 (2,7,10).
-
f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
function T(n,k,p,q,j)
if n eq 2 then return NthPrime(j);
elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
elif (k eq 1 or k eq n) then return 2;
else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j);
end if; return T;
end function;
[T(n,k,1,4,5): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 04 2021
-
T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]];
Table[T[n,k,1,4,5], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 04 2021 *)
-
@CachedFunction
def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
def T(n,k,p,q,j):
if (n==2): return nth_prime(j)
elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
elif (k==1 or k==n): return 2
else: return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j)
flatten([[T(n,k,1,4,5) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 04 2021
A153651
Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + (j+5)*prime(j)*T(n-2, k-1) with j=6, read by rows.
Original entry on oeis.org
2, 13, 13, 2, 334, 2, 2, 2195, 2195, 2, 2, 2483, 52152, 2483, 2, 2, 2771, 368520, 368520, 2771, 2, 2, 3059, 726360, 8194776, 726360, 3059, 2, 2, 3347, 1125672, 61619496, 61619496, 1125672, 3347, 2, 2, 3635, 1566456, 166614648, 1295091960, 166614648, 1566456, 3635, 2
Offset: 1
Triangle begins as:
2;
13, 13;
2, 334, 2;
2, 2195, 2195, 2;
2, 2483, 52152, 2483, 2;
2, 2771, 368520, 368520, 2771, 2;
2, 3059, 726360, 8194776, 726360, 3059, 2;
2, 3347, 1125672, 61619496, 61619496, 1125672, 3347, 2;
2, 3635, 1566456, 166614648, 1295091960, 166614648, 1566456, 3635, 2;
Sequences with variable (p,q,j):
A153516 (0,1,2),
A153518 (0,1,3),
A153520 (0,1,4),
A153521 (0,1,5),
A153648 (1,0,3),
A153649 (1,1,4),
A153650 (1,4,5), this sequence (1,5,6),
A153652 (2,1,7),
A153653 (2,1,8),
A153654 (2,1,9),
A153655 (2,1,10),
A153656 (2,3,9),
A153657 (2,7,10).
-
f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
function T(n,k,p,q,j)
if n eq 2 then return NthPrime(j);
elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
elif (k eq 1 or k eq n) then return 2;
else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j);
end if; return T;
end function;
[T(n,k,1,5,6): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 06 2021
-
T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]];
Table[T[n,k,1,5,6], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 06 2021 *)
-
@CachedFunction
def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
def T(n,k,p,q,j):
if (n==2): return nth_prime(j)
elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
elif (k==1 or k==n): return 2
else: return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j)
flatten([[T(n,k,1,5,6) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 06 2021
A153652
Triangle T(n, k, j) = T(n-1, k, j) + T(n-1, k-1, j) + (2*j + 1)*prime(j)*T(n-2, k-1, j) with T(2, k, j) = prime(j) and j = 7, read by rows.
Original entry on oeis.org
2, 17, 17, 2, 574, 2, 2, 4911, 4911, 2, 2, 5423, 156192, 5423, 2, 2, 5935, 1413920, 1413920, 5935, 2, 2, 6447, 2802720, 42656800, 2802720, 6447, 2, 2, 6959, 4322592, 406009120, 406009120, 4322592, 6959, 2, 2, 7471, 5973536, 1125025312, 11689502240, 1125025312, 5973536, 7471, 2
Offset: 1
Triangle begins as:
2;
17, 17;
2, 574, 2;
2, 4911, 4911, 2;
2, 5423, 156192, 5423, 2;
2, 5935, 1413920, 1413920, 5935, 2;
2, 6447, 2802720, 42656800, 2802720, 6447, 2;
2, 6959, 4322592, 406009120, 406009120, 4322592, 6959, 2;
2, 7471, 5973536, 1125025312, 11689502240, 1125025312, 5973536, 7471, 2;
-
f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
function T(n,k,j)
if n eq 2 then return NthPrime(j);
elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
elif (k eq 1 or k eq n) then return 2;
else return T(n-1,k,j) + T(n-1,k-1,j) + (2*j+1)*NthPrime(j)*T(n-2,k-1,j);
end if; return T;
end function;
[T(n,k,7): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 02 2021
-
T[n_, k_, j_]:= T[n,k,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,j] + T[n-1,k-1,j] + (2*j+1)*Prime[j]*T[n-2,k-1,j] ]]];
Table[T[n,k,7], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 02 2021 *)
-
@CachedFunction
def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
def T(n,k,j):
if (n==2): return nth_prime(j)
elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
elif (k==1 or k==n): return 2
else: return T(n-1,k,j) + T(n-1,k-1,j) + (2*j+1)*nth_prime(j)*T(n-2,k-1,j)
flatten([[T(n,k,7) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 02 2021
A153653
Triangle T(n, k, j) = T(n-1, k, j) + T(n-1, k-1, j) + (2*j + 1)*prime(j)*T(n-2, k-1, j) with T(2, k, j) = prime(j) and j = 8, read by rows.
Original entry on oeis.org
2, 19, 19, 2, 718, 2, 2, 6857, 6857, 2, 2, 7505, 245628, 7505, 2, 2, 8153, 2467944, 2467944, 8153, 2, 2, 8801, 4900212, 84273732, 4900212, 8801, 2, 2, 9449, 7542432, 886319856, 886319856, 7542432, 9449, 2, 2, 10097, 10394604, 2476630764, 28993055148, 2476630764, 10394604, 10097, 2
Offset: 1
Triangle begins as:
2;
19, 19;
2, 718, 2;
2, 6857, 6857, 2;
2, 7505, 245628, 7505, 2;
2, 8153, 2467944, 2467944, 8153, 2;
2, 8801, 4900212, 84273732, 4900212, 8801, 2;
2, 9449, 7542432, 886319856, 886319856, 7542432, 9449, 2;
2, 10097, 10394604, 2476630764, 28993055148, 2476630764, 10394604, 10097, 2;
-
f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
function T(n,k,j)
if n eq 2 then return NthPrime(j);
elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
elif (k eq 1 or k eq n) then return 2;
else return T(n-1,k,j) + T(n-1,k-1,j) + (2*j+1)*NthPrime(j)*T(n-2,k-1,j);
end if; return T;
end function;
[T(n,k,8): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 03 2021
-
T[n_, k_, j_]:= T[n,k,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,j] + T[n-1,k-1,j] + (2*j+1)*Prime[j]*T[n-2,k-1,j] ]]];
Table[T[n,k,8], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 03 2021 *)
-
@CachedFunction
def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
def T(n,k,j):
if (n==2): return nth_prime(j)
elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
elif (k==1 or k==n): return 2
else: return T(n-1,k,j) + T(n-1,k-1,j) + (2*j+1)*nth_prime(j)*T(n-2,k-1,j)
flatten([[T(n,k,8) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 03 2021
A153654
Triangle T(n, k, j) = T(n-1, k, j) + T(n-1, k-1, j) + (2*j + 1)*prime(j)*T(n-2, k-1, j) with T(2, k, j) = prime(j) and j = 9, read by rows.
Original entry on oeis.org
2, 23, 23, 2, 1054, 2, 2, 12165, 12165, 2, 2, 13041, 484928, 13041, 2, 2, 13917, 5814074, 5814074, 13917, 2, 2, 14793, 11526908, 223541684, 11526908, 14793, 2, 2, 15669, 17623430, 2775818930, 2775818930, 17623430, 15669, 2, 2, 16545, 24103640, 7830701156, 103239353768, 7830701156, 24103640, 16545, 2
Offset: 1
Triangle begins as:
2;
23, 23;
2, 1054, 2;
2, 12165, 12165, 2;
2, 13041, 484928, 13041, 2;
2, 13917, 5814074, 5814074, 13917, 2;
2, 14793, 11526908, 223541684, 11526908, 14793, 2;
2, 15669, 17623430, 2775818930, 2775818930, 17623430, 15669, 2;
2, 16545, 24103640, 7830701156, 103239353768, 7830701156, 24103640, 16545, 2;
-
f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
function T(n,k,j)
if n eq 2 then return NthPrime(j);
elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
elif (k eq 1 or k eq n) then return 2;
else return T(n-1,k,j) + T(n-1,k-1,j) + (2*j+1)*NthPrime(j)*T(n-2,k-1,j);
end if; return T;
end function;
[T(n,k,9): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 03 2021
-
T[n_, k_, j_]:= T[n,k,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,j] + T[n-1,k-1,j] + (2*j+1)*Prime[j]*T[n-2,k-1,j] ]]];
Table[T[n,k,9], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 03 2021 *)
-
@CachedFunction
def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
def T(n,k,j):
if (n==2): return nth_prime(j)
elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
elif (k==1 or k==n): return 2
else: return T(n-1,k,j) + T(n-1,k-1,j) + (2*j+1)*nth_prime(j)*T(n-2,k-1,j)
flatten([[T(n,k,9) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 03 2021
Showing 1-10 of 13 results.