cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A052700 Expansion of e.g.f. x*(1-x)/(1-3*x).

Original entry on oeis.org

0, 1, 4, 36, 432, 6480, 116640, 2449440, 58786560, 1587237120, 47617113600, 1571364748800, 56569130956800, 2206196107315200, 92660236507238400, 4169710642825728000, 200146110855634944000, 10207451653637382144000, 551202389296418635776000, 31418536189895862239232000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. A153647.

Programs

  • Maple
    spec := [S,{S=Prod(Z,Sequence(Prod(Sequence(Z),Union(Z,Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Table[2*3^(n-2)*n! -2*Boole[n==0]/9 + Boole[n==1]/3, {n,0,30}] (* G. C. Greubel, May 31 2022 *)
    With[{nn=30},CoefficientList[Series[x (1-x)/(1-3x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 19 2022 *)
  • SageMath
    [0,1]+[2*3^(n-2)*factorial(n) for n in (2..30)] # G. C. Greubel, May 31 2022

Formula

E.g.f.: x*(1-x)/(1-3*x)
D-finite recurrence: a(1)=1, a(0)=0, a(2)=4, a(n) = 3*n*a(n-1).
a(n) = 2*3^(n-2)*n! = 2*A153647(n-2), n>1.
From Amiram Eldar, May 31 2025: (Start)
Sum_{n>=1} 1/a(n) = 9*exp(1/3)/2 - 5.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4 - 9*exp(-1/3)/2. (End)
Showing 1-1 of 1 results.