A153652 Triangle T(n, k, j) = T(n-1, k, j) + T(n-1, k-1, j) + (2*j + 1)*prime(j)*T(n-2, k-1, j) with T(2, k, j) = prime(j) and j = 7, read by rows.
2, 17, 17, 2, 574, 2, 2, 4911, 4911, 2, 2, 5423, 156192, 5423, 2, 2, 5935, 1413920, 1413920, 5935, 2, 2, 6447, 2802720, 42656800, 2802720, 6447, 2, 2, 6959, 4322592, 406009120, 406009120, 4322592, 6959, 2, 2, 7471, 5973536, 1125025312, 11689502240, 1125025312, 5973536, 7471, 2
Offset: 1
Examples
Triangle begins as: 2; 17, 17; 2, 574, 2; 2, 4911, 4911, 2; 2, 5423, 156192, 5423, 2; 2, 5935, 1413920, 1413920, 5935, 2; 2, 6447, 2802720, 42656800, 2802720, 6447, 2; 2, 6959, 4322592, 406009120, 406009120, 4322592, 6959, 2; 2, 7471, 5973536, 1125025312, 11689502240, 1125025312, 5973536, 7471, 2;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >; function T(n,k,j) if n eq 2 then return NthPrime(j); elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j); elif (k eq 1 or k eq n) then return 2; else return T(n-1,k,j) + T(n-1,k-1,j) + (2*j+1)*NthPrime(j)*T(n-2,k-1,j); end if; return T; end function; [T(n,k,7): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 02 2021
-
Mathematica
T[n_, k_, j_]:= T[n,k,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,j] + T[n-1,k-1,j] + (2*j+1)*Prime[j]*T[n-2,k-1,j] ]]]; Table[T[n,k,7], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 02 2021 *)
-
Sage
@CachedFunction def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2) def T(n,k,j): if (n==2): return nth_prime(j) elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j) elif (k==1 or k==n): return 2 else: return T(n-1,k,j) + T(n-1,k-1,j) + (2*j+1)*nth_prime(j)*T(n-2,k-1,j) flatten([[T(n,k,7) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 02 2021
Formula
T(n, k, j) = T(n-1, k, j) + T(n-1, k-1, j) + (2*j + 1)*prime(j)*T(n-2, k-1, j) with T(2, k, j) = prime(j), T(3, 2, j) = 2*prime(j)^2 - 4, T(4, 2, j) = T(4, 3, j) = prime(j)^2 - 2, T(n, 1, j) = T(n, n, j) = 2 and j = 7.
Sum_{k=0..n} T(n, k, j) = 2*prime(j)^(n-1) for j=7 = 2*A001026(n-1).
Extensions
Edited by G. C. Greubel, Mar 02 2021