A153655 Triangle T(n, k, j) = T(n-1, k, j) + T(n-1, k-1, j) + (2*j + 1)*prime(j)*T(n-2, k-1, j) with T(2, k, j) = prime(j) and j = 10, read by rows.
2, 29, 29, 2, 1678, 2, 2, 24387, 24387, 2, 2, 25607, 1070676, 25607, 2, 2, 26827, 15947966, 15947966, 26827, 2, 2, 28047, 31569456, 683937616, 31569456, 28047, 2, 2, 29267, 47935146, 10427818366, 10427818366, 47935146, 29267, 2, 2, 30487, 65045036, 29701552216, 437373644876, 29701552216, 65045036, 30487, 2
Offset: 1
Examples
Triangle begins as: 2; 29, 29; 2, 1678, 2; 2, 24387, 24387, 2; 2, 25607, 1070676, 25607, 2; 2, 26827, 15947966, 15947966, 26827, 2; 2, 28047, 31569456, 683937616, 31569456, 28047, 2; 2, 29267, 47935146, 10427818366, 10427818366, 47935146, 29267, 2; 2, 30487, 65045036, 29701552216, 437373644876, 29701552216, 65045036, 30487, 2;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >; function T(n,k,j) if n eq 2 then return NthPrime(j); elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j); elif (k eq 1 or k eq n) then return 2; else return T(n-1,k,j) + T(n-1,k-1,j) + (2*j+1)*NthPrime(j)*T(n-2,k-1,j); end if; return T; end function; [T(n,k,10): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 03 2021
-
Mathematica
T[n_, k_, j_]:= T[n,k,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,j] + T[n-1,k-1,j] + (2*j+1)*Prime[j]*T[n-2,k-1,j] ]]]; Table[T[n,k,10], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 03 2021 *)
-
Sage
@CachedFunction def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2) def T(n,k,j): if (n==2): return nth_prime(j) elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j) elif (k==1 or k==n): return 2 else: return T(n-1,k,j) + T(n-1,k-1,j) + (2*j+1)*nth_prime(j)*T(n-2,k-1,j) flatten([[T(n,k,10) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 03 2021
Formula
T(n, k, j) = T(n-1, k, j) + T(n-1, k-1, j) + (2*j + 1)*prime(j)*T(n-2, k-1, j) with T(2, k, j) = prime(j), T(3, 2, j) = 2*prime(j)^2 - 4, T(4, 2, j) = T(4, 3, j) = prime(j)^2 - 2, T(n, 1, j) = T(n, n, j) = 2 and j = 10.
From G. C. Greubel, Mar 04 2021: (Start)
Sum_{k=0..n} T(n, k, 10) = -(76/147)*[n=0] - (116/7)*[n=1] + 1682*(i*sqrt(609))^(n-2)*(ChebyshevU(n-2, -i/sqrt(609)) - (27*i/sqrt(609))*ChebyshevU(n-3, -i/sqrt(609) )).
Row sums satisfy the recurrence S(n) = 2*S(n-1) + 609*S(n-2) for n>4 with S(0) = 2, S(1) = 58, S(2) = 1682, S(3) = 48778. (End)
Extensions
Edited by G. C. Greubel, Mar 03 2021