A153685 Minimal exponents m such that the fractional part of (11/10)^m obtains a minimum (when starting with m=1).
1, 17, 37, 237, 599, 615, 6638, 13885, 1063942, 9479731
Offset: 1
A153673 Greatest number m such that the fractional part of (101/100)^A153669(n) <= 1/m.
100, 147, 703, 932, 1172, 3389, 7089, 8767, 11155, 17457, 20810, 25355, 1129226, 1741049, 1960780, 2179637, 2859688, 11014240, 75249086, 132665447, 499298451
Offset: 1
Examples
a(2)=147 since 1/148<fract((101/100)^A153669(2))=fract((101/100)^70)=0.00676...<=1/147.
Programs
-
Mathematica
A153669 = {1, 70, 209, 378, 1653, 2697, 4806, 13744, 66919, 67873, 75666, 81125, 173389, 529938, 1572706, 4751419, 7159431, 7840546, 15896994, 71074288, 119325567}; Table[fp = FractionalPart[(101/100)^A153669[[n]]]; m = Floor[1/fp]; While[fp <= 1/m, m++]; m - 1, {n, 1, Length[A153669]}] (* Robert Price, Mar 25 2019 *)
Formula
a(n) = floor(1/fract((101/100)^A153669(n))), where fract(x) = x-floor(x).
Extensions
a(15)-a(21) from Robert Price, Mar 25 2019
A153681 Greatest number m such that the fractional part of (1024/1000)^A153677(n) <= 1/m.
41, 60, 76, 116, 233, 463, 718, 1350, 12472, 13733, 17428, 27955, 32276, 41155, 62437, 69643, 111085, 811799, 2656810, 11462221, 56414953
Offset: 1
Examples
a(2)=60 since 1/61 < fract((1024/1000)^A153677(2)) = fract((1024/1000)^68) = 0.0164... <= 1/60.
Programs
-
Mathematica
A153677 = {1, 68, 142, 341, 395, 490, 585, 1164, 1707, 26366, 41358, 46074, 120805, 147332, 184259, 205661, 385710, 522271, 3418770, 3675376, 9424094}; Table[fp = FractionalPart[(1024/1000)^A153677[[n]]]; m = Floor[1/fp]; While[fp <= 1/m, m++]; m - 1, {n, 1, Length[A153677]}] (* Robert Price, Mar 25 2019 *)
Formula
a(n) = floor(1/fract((1024/1000)^A153677(n))), where fract(x) = x-floor(x).
Extensions
a(18)-a(21) from Robert Price, Mar 25 2019
Comments
Examples
Crossrefs
Programs
Mathematica
Formula
Extensions