cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A153688 Numbers k such that the fractional part of (11/10)^k is greater than 1-(1/k).

Original entry on oeis.org

1, 7, 77, 103, 320, 1821, 2992, 15290, 88651, 88652, 180168, 410498, 548816, 672732
Offset: 1

Views

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Comments

Numbers k such that fract((11/10)^k) > 1-(1/k), where fract(x) = x-floor(x).
The next such number must be greater than 2*10^5.
a(15) > 10^7. Robert Price, Mar 19 2019

Examples

			a(2) = 7, since fract((11/10)^7) = 0.9487... > 0.8571... = 1 - (1/7), but fract((11/10)^k) <= 1 - (1/k) for 1 < k < 7.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], FractionalPart[(11/10)^#] >= 1 - (1/#) &] (* G. C. Greubel, Aug 24 2016 *)

Extensions

a(12)-a(14) from Robert Price, Mar 19 2019

A153684 Greatest number m such that the fractional part of (1024/1000)^A153680(n) >= 1-(1/m).

Original entry on oeis.org

1, 93, 123, 1061, 395, 1360, 4137, 2706, 66910, 21740, 15986, 58999, 571666, 1192010, 793642, 1093343, 3476524
Offset: 1

Views

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Examples

			a(2)=93, since 1-(1/94)=0.98936...>fract((1024/1000)^A153680(2))=fract((1024/1000)^29)=0.98929...>=1-(1/93).
		

Crossrefs

Formula

a(n):=floor(1/(1-fract((1024/1000)^A153680(n)))), where fract(x) = x-floor(x).

Extensions

a(16) - a(17) from Hagen von Eitzen, May 16 2009

A153676 Greatest number m such that the fractional part of (101/100)^A153672(n) >= 1-(1/m).

Original entry on oeis.org

1, 76, 238, 913, 1334, 4645, 17396, 351085, 69587, 552184, 329808, 381654, 35874097, 5011174, 6220178, 33773592, 13149134, 105749940
Offset: 1

Views

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Examples

			a(2)=76, since 1-(1/77)=0.9870...>fract((101/100)^A153672(2))=fract((101/100)^69)=0.98689...>=1-(1/76).
		

Crossrefs

Formula

a(n):=floor(1/(1-fract((101/100)^A153672(n)))), where fract(x) = x-floor(x).

Extensions

a(13)-a(18) from Robert Price, May 10 2012
Showing 1-3 of 3 results.