A153731 Triangle read by rows: nonzero coefficients of Swinnerton-Dyer polynomials.
1, -2, 1, 1, -10, 1, 576, -960, 352, -40, 1, 46225, -5596840, 13950764, -7453176, 1513334, -141912, 6476, -136, 1, 2000989041197056, -44660812492570624, 183876928237731840, -255690851718529024, 172580952324702208, -65892492886671360, 15459151516270592
Offset: 0
Examples
The first few rows are: [0] 1; [1] -2, 1; [2] 1, -10, 1; [3] 576, -960, 352, -40, 1; [4] 46225, -5596840, 13950764, -7453176, 1513334, -141912, 6476, -136, 1; .... x, -2 + x^2, 1 - 10*x^2 + x^4, 576 - 960*x^2 + 352*x^4 - 40*x^6 + x^8, ...
References
- Roman E. Maeder. Programming in Mathematica, Addison-Wesley, 1990, page 105.
Links
- Alois P. Heinz, Rows n = 0..10, flattened
- Lucas A. Brown, Python program.
- Eric Weisstein's World of Mathematics, Swinnerton-Dyer Polynomial.
- Wikipedia, Swinnerton-Dyer polynomial.
Programs
-
Julia
using Nemo function A153731Row(n) R, x = PolynomialRing(ZZ, "x") p = swinnerton_dyer(n, x) [coeff(p, j) for j in 0:2:2^n] end for n in 1:4 A153731Row(n) |> println end # Peter Luschny, Mar 13 2018
-
Magma
// Note that Magma, like Mathworld, defines the polynomials for n >= 1. P
:= PolynomialRing(IntegerRing()); for n := 1 to 5 do p := SwinnertonDyerPolynomial(n); [c : c in Coefficients(p) | not IsZero(c)]; end for; // Peter Luschny, Jun 12 2022 -
Maple
p:= proc(n) option remember; expand(`if`(n=0, x, mul( subs(x=x+i*sqrt(ithprime(n)), p(n-1)), i=[1, -1]))) end: T:= n-> ListTools[Reverse]([coeffs(p(n))])[]: seq(T(n), n=0..5); # Alois P. Heinz, Nov 28 2024
-
Mathematica
SwinnertonDyerP[0, x_ ] := x; SwinnertonDyerP[n_, x_ ] := Module[{sd, srp = Sqrt[Prime[n]]}, sd[y_] = SwinnertonDyerP[n - 1, y]; Expand[ sd[x + srp] sd[x - srp] ] ]; row[n_] := CoefficientList[ SwinnertonDyerP[n, x], x^2]; Table[row[n], {n, 1, 5}] // Flatten (* Jean-François Alcover, Nov 09 2012 *) (* Second program: *) SwinnertonDyerP[n_Integer?Positive, x_] := Block[{arg, poly, i}, args = Outer[Times, Table[Sqrt[Prime[i]], {i, n}], {-1, 1}]; poly = Outer[Plus, {x}, Sequence @@ args]; Expand[Times @@ Flatten[poly]]] Table[Select[CoefficientList[SwinnertonDyerP[n, x], x], # != 0 &], {n, 1, 4}] // TableForm (* Peter Luschny, Jun 12 2022 *)
-
Python
# See LINKS
Extensions
One term (row 0) prepended by Alois P. Heinz, Nov 28 2024
Comments