cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153745 Numbers k such that the number of digits d in k^2 is not prime and for each factor f of d the sum of the d/f digit groupings in k^2 of size f is a square.

Original entry on oeis.org

1, 2, 3, 39, 60, 86, 90, 321, 347, 401, 3387, 3414, 3578, 3900, 4767, 6000, 6549, 6552, 6744, 6780, 6783, 7387, 7862, 7889, 8367, 8598, 8600, 8773, 8898, 9000, 9220, 9884, 9885, 10000, 10001, 10002, 10003, 10004, 10005, 10010, 10011, 10012, 10013, 10020
Offset: 1

Views

Author

Doug Bell, Dec 31 2008

Keywords

Comments

This sequence is a subsequence of A061910.

Examples

			39^2 = 1521; 1+5+2+1 = 9 = 3^2 and 15+21 = 36 = 6^2.
321^2 = 103041; 1+0+3+0+4+1 = 9 = 3^2; 10+30+41 = 81 = 9^2; and 103+041 = 144 = 12^2.
		

Crossrefs

Programs

  • PARI
    isok(n) = {my(d = digits(n^2)); if (! isprime(#d), my(dd = divisors(#d)); for (k=1, #dd, my(tg = 10^dd[k]); my(s = 0); my(m = n^2); for (i=1, #d/dd[k], s += m % tg; m = m\tg;); if (! issquare(s), return(0));); return (1););} \\ Michel Marcus, Jun 06 2015
    
  • Python
    from sympy import divisors
    from gmpy2 import is_prime, isqrt_rem, isqrt, is_square
    A153745_list = []
    for l in range(1,20):
        if not is_prime(l):
            fs = divisors(l)
            a, b = isqrt_rem(10**(l-1))
            if b > 0:
                a += 1
            for n in range(a,isqrt(10**l-1)+1):
                ns = str(n**2)
                for g in fs:
                    y = 0
                    for h in range(0,l,g):
                        y += int(ns[h:h+g])
                    if not is_square(y):
                        break
                else:
                    A153745_list.append(n) # Chai Wah Wu, Jun 08 2015

Formula

a(n) = sqrt(A258660(n)). - Doug Bell, Jun 15 2015

Extensions

Data corrected by Doug Bell, Jan 19 2009
Name corrected by Doug Bell, Jun 06 2015