cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A153747 Numbers k such that there are 9 digits in k^2 and for each factor f of 9 (1,3) the sum of digit groupings of size f is a square.

Original entry on oeis.org

10000, 10001, 10002, 10003, 10004, 10005, 10010, 10011, 10012, 10013, 10020, 10021, 10022, 10030, 10031, 10200, 10284, 10287, 10300, 10353, 10356, 10359, 10433, 10578, 10588, 10617, 10623, 10642, 10679, 10683, 10686, 10692, 10734
Offset: 1

Views

Author

Doug Bell, Dec 31 2008

Keywords

Comments

This sequence is a subsequence of both A153745 and A061910.
Last term is a(474) = 31493. - Giovanni Resta, Jun 06 2015

Examples

			10433^2 = 108847489; 1+0+8+8+4+7+4+8+9 = 49 = 7^2; and 108+847+489 = 1444 = 38^2.
		

Crossrefs

Programs

  • Mathematica
    dgfsQ[n_]:=Module[{idn2=IntegerDigits[n^2]},AllTrue[{Sqrt[ Total[ idn2]], Sqrt[ Total[ FromDigits/@ Partition[idn2,3]]]},IntegerQ]]; Select[ Range[ 10000,31622],dgfsQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 19 2018 *)

A153748 Numbers k such that there are 10 digits in k^2 and for each factor f of 10 (1, 2, 5) the sum of digit groupings of size f is a square.

Original entry on oeis.org

33018, 33051, 33081, 33084, 33150, 33153, 33477, 33573, 33579, 33582, 33603, 33606, 33642, 33645, 33648, 36312, 39192, 41703, 44928, 47439, 53052, 53971, 55785, 56277, 60725, 63490, 66342, 66345, 66375, 66381, 66444, 66903, 66942, 67008, 69645, 76710, 77530
Offset: 1

Views

Author

Doug Bell, Dec 31 2008

Keywords

Comments

This sequence is a subsequence of both A153745 and A061910.
Last term is a(48) = 99677. - Giovanni Resta, Jun 06 2015

Crossrefs

Extensions

More terms from Giovanni Resta, Jun 06 2015

A153750 Numbers k such that there are 14 digits in k^2 and for each factor f of 14 (1,2,7) the sum of digit groupings of size f is a square.

Original entry on oeis.org

3196200, 3330249, 3330348, 3330480, 3330801, 3331071, 3331367, 3331695, 3331731, 3331758, 3331803, 3331830, 3331860, 3331866, 3331929, 3331995, 3332025, 3332058, 3332061, 3332091, 3332124, 3332127, 3332160, 3332190
Offset: 1

Views

Author

Doug Bell, Dec 31 2008

Keywords

Comments

This sequence is a subsequence of both A153745 and A061910.
Last term is a(266) = 9996830. - Giovanni Resta, Jun 06 2015

Examples

			3331367^2 = 11098006088689;
1+1+0+9+8+0+0+6+0+8+8+6+8+9 = 64 = 8^2;
11+09+80+06+08+86+89 = 289 = 17^2;
1109800+6088689 = 7198489 = 2683^2.
		

Crossrefs

Programs

  • Mathematica
    sdgQ[n_]:=Module[{idn=IntegerDigits[n^2],t2,t7},t2=Total[FromDigits/@ Partition[ idn,2]];t7=Total[FromDigits/@Partition[idn,7]]; AllTrue[ {Sqrt[Total[idn]],Sqrt[t2],Sqrt[t7]},IntegerQ]]; Select[Range[ Round[ 3.16*10^6],Round[3.34*10^6]],sdgQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 07 2016 *)

A153751 Numbers k such that there are 15 digits in k^2 and for each factor f of 15 (1,3,5) the sum of digit groupings of size f is a square.

Original entry on oeis.org

10000000, 10000001, 10000002, 10000003, 10000004, 10000005, 10000010, 10000011, 10000012, 10000013, 10000020, 10000021, 10000022, 10000030, 10000031, 10000200, 10000300, 10011003, 10022000, 10035990, 10042440
Offset: 1

Views

Author

Doug Bell, Dec 31 2008

Keywords

Comments

This sequence is a subsequence of both A153745 and A061910.
The last term is a(2782) = 31616301. - Giovanni Resta, Jun 06 2015

Examples

			10000011^2 = 100000220000121;
1+0+0+0+0+0+2+2+0+0+0+0+1+2+1 = 9 = 3^2;
100+000+220+000+121 = 441 = 21^2;
10000+02200+00121 = 12321 = 111^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^7,31622776],AllTrue[{Sqrt[Total[IntegerDigits[#^2]]],Sqrt[Total[ FromDigits/@ Partition[IntegerDigits[#^2],3]]],Sqrt[Total[FromDigits/@Partition[IntegerDigits[#^2],5]]]},IntegerQ]&] (* Harvey P. Dale, Apr 11 2023 *)

A153752 Numbers k such that there are 16 digits in k^2 and for each factor f of 16 (1,2,4,8) the sum of digit groupings of size f is a square.

Original entry on oeis.org

31883334, 31886667, 31956690, 31970049, 32469999, 33338100, 33341067, 33870000, 34140000, 34149999, 34713042, 34763334, 34856667, 35780000, 36356249, 36356480, 36359065, 37523635, 37737452, 37949451, 38362409
Offset: 1

Views

Author

Doug Bell, Dec 31 2008

Keywords

Comments

This sequence is a subsequence of both A153745 and A061910.
This sequence contains 124 terms, with a(124) = 9998956. - Giovanni Resta, Jun 06 2015

Examples

			31883334^2 = 1016546986955556;
1+0+1+6+5+4+6+9+8+6+9+5+5+5+5+6 = 81 = 9^2;
10+16+54+69+86+95+55+56 = 441 = 21^2;
1016+5469+8695+5556 = 20736 = 144^2;
10165469+86955556 = 97121025 = 9855^2.
		

Crossrefs

Programs

  • Mathematica
    okQ[n_]:=Module[{n2=IntegerDigits[n^2]},And@@(IntegerQ[Sqrt[ #]]&/@ (Total/@(Table[ FromDigits/@Partition[n2,2^i],{i,0,3}])))]; Select[ Range[31622777,38400000],okQ] (* Harvey P. Dale, Aug 12 2012 *)

A258660 Numbers n such that the number of digits d in n is not prime and for each factor f of d the sum of the d/f digit groupings of size f is a square.

Original entry on oeis.org

1, 4, 9, 1521, 3600, 7396, 8100, 103041, 120409, 160801, 11471769, 11655396, 12802084, 15210000, 22724289, 36000000, 42889401, 42928704, 45481536, 45968400, 46009089, 54567769, 61811044, 62236321, 70006689, 73925604, 73960000, 76965529, 79174404, 81000000, 85008400, 97693456, 97713225, 100000000
Offset: 1

Views

Author

Doug Bell, Jun 06 2015

Keywords

Comments

If a(n) has m = p^k digits, then a(n)*10^((p-1)*m) is also a member of the sequence. For instance, 1521*10^(2^k-4) is in the sequence for all integers k >=2. # Chai Wah Wu, Jun 08 2015

Crossrefs

Cf. A153745.

Programs

  • Python
    from sympy import divisors
    from gmpy2 import is_prime, isqrt, isqrt_rem, is_square
    A258660_list = []
    for l in range(1,17):
        if not is_prime(l):
            fs = divisors(l)
            a, b = isqrt_rem(10**(l-1))
            if b > 0:
                a += 1
            for n in range(a,isqrt(10**l-1)+1):
                n2 = n**2
                ns = str(n2)
                for g in fs:
                    y = 0
                    for h in range(0,l,g):
                        y += int(ns[h:h+g])
                    if not is_square(y):
                        break
                else:
                    A258660_list.append(n2) # Chai Wah Wu, Jun 08 2015

Formula

a(n) = A153745(n)^2.

Extensions

Corrected a(13)-a(14) by Chai Wah Wu, Jun 08 2015

A153746 Numbers k such that there are 8 digits in k^2 and for each factor f of 8 (1,2,4) the sum of digit groupings of size f is a square.

Original entry on oeis.org

3387, 3414, 3578, 3900, 4767, 6000, 6549, 6552, 6744, 6780, 6783, 7387, 7862, 7889, 8367, 8598, 8600, 8773, 8898, 9000, 9220, 9884, 9885
Offset: 1

Views

Author

Doug Bell, Dec 31 2008

Keywords

Comments

This is the complete sequence. This sequence is a subsequence of both A153745 and A061910.

Crossrefs

A153749 Numbers k such that there are 12 digits in k^2 and for each factor f of 12 (1,2,3,4,6) the sum of digit groupings of size f is a square.

Original entry on oeis.org

316713, 334401, 658635
Offset: 1

Views

Author

Doug Bell, Dec 31 2008

Keywords

Comments

This is the complete sequence. This sequence is a subsequence of both A153745 and A061910.

Examples

			316713^2 = 100307124369;
1+0+0+3+0+7+1+2+4+3+6+9 = 36 = 6^2;
10+03+07+12+43+69 = 144 = 12^2;
100+307+124+369 = 900 = 30^2;
1003+0712+4369 = 6084 = 78^2;
100307+124369 = 224676 = 474^2.
		

Crossrefs

A153753 Numbers k such that there are 18 digits in k^2 and for each factor f of 18 (1,2,3,6,9) the sum of digit groupings of size f is a square.

Original entry on oeis.org

324344373, 333306315, 333321861, 333359685, 333361029, 334363803, 369396732, 370397193, 407380269, 407381484, 444475035, 666636972, 666695028, 666701463, 702667239, 702671124, 702736170, 703667130, 704741610
Offset: 1

Views

Author

Doug Bell, Dec 31 2008

Keywords

Comments

This sequence is a subsequence of both A153745 and A061910.

Examples

			324344373^2 = 105199272296763129;
1+0+5+1+9+9+2+7+2+2+9+6+7+6+3+1+2+9 = 81 = 9^2;
10+51+99+27+22+96+76+31+29 = 441 = 21^2;
105+199+272+296+763+129 = 1764 = 42^2;
105199+272296+763129 = 1140624 = 1068^2;
105199272+296763129 = 401962401 = 20049^2.
		

Crossrefs

Showing 1-9 of 9 results.