cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153750 Numbers k such that there are 14 digits in k^2 and for each factor f of 14 (1,2,7) the sum of digit groupings of size f is a square.

Original entry on oeis.org

3196200, 3330249, 3330348, 3330480, 3330801, 3331071, 3331367, 3331695, 3331731, 3331758, 3331803, 3331830, 3331860, 3331866, 3331929, 3331995, 3332025, 3332058, 3332061, 3332091, 3332124, 3332127, 3332160, 3332190
Offset: 1

Views

Author

Doug Bell, Dec 31 2008

Keywords

Comments

This sequence is a subsequence of both A153745 and A061910.
Last term is a(266) = 9996830. - Giovanni Resta, Jun 06 2015

Examples

			3331367^2 = 11098006088689;
1+1+0+9+8+0+0+6+0+8+8+6+8+9 = 64 = 8^2;
11+09+80+06+08+86+89 = 289 = 17^2;
1109800+6088689 = 7198489 = 2683^2.
		

Crossrefs

Programs

  • Mathematica
    sdgQ[n_]:=Module[{idn=IntegerDigits[n^2],t2,t7},t2=Total[FromDigits/@ Partition[ idn,2]];t7=Total[FromDigits/@Partition[idn,7]]; AllTrue[ {Sqrt[Total[idn]],Sqrt[t2],Sqrt[t7]},IntegerQ]]; Select[Range[ Round[ 3.16*10^6],Round[3.34*10^6]],sdgQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 07 2016 *)