A153752 Numbers k such that there are 16 digits in k^2 and for each factor f of 16 (1,2,4,8) the sum of digit groupings of size f is a square.
31883334, 31886667, 31956690, 31970049, 32469999, 33338100, 33341067, 33870000, 34140000, 34149999, 34713042, 34763334, 34856667, 35780000, 36356249, 36356480, 36359065, 37523635, 37737452, 37949451, 38362409
Offset: 1
Examples
31883334^2 = 1016546986955556; 1+0+1+6+5+4+6+9+8+6+9+5+5+5+5+6 = 81 = 9^2; 10+16+54+69+86+95+55+56 = 441 = 21^2; 1016+5469+8695+5556 = 20736 = 144^2; 10165469+86955556 = 97121025 = 9855^2.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..124 (all terms)
Programs
-
Mathematica
okQ[n_]:=Module[{n2=IntegerDigits[n^2]},And@@(IntegerQ[Sqrt[ #]]&/@ (Total/@(Table[ FromDigits/@Partition[n2,2^i],{i,0,3}])))]; Select[ Range[31622777,38400000],okQ] (* Harvey P. Dale, Aug 12 2012 *)
Comments