cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153764 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,0,-1,0,0,0,0,0,0,0,0,...] DELTA [0,1,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 3, 1, 1, 0, 1, 3, 3, 4, 1, 1, 0, 1, 3, 6, 4, 5, 1, 1, 0, 1, 4, 6, 10, 5, 6, 1, 1, 0, 1, 4, 10, 10, 15, 6, 7, 1, 1, 0, 1, 5, 10, 20, 15, 21, 7, 8, 1, 1, 0, 1, 5, 15, 20, 35, 21, 28, 8, 9, 1, 1, 0, 1, 6, 15, 35, 35, 56, 28, 36, 9, 10, 1, 1, 0
Offset: 0

Views

Author

Philippe Deléham, Jan 01 2009

Keywords

Comments

A130595*A153342 as infinite lower triangular matrices. Reflected version of A103631. Another version of A046854. Row sums are Fibonacci numbers (A000045).
A055830*A130595 as infinite lower triangular matrices.

Examples

			Triangle begins:
  1;
  1, 0;
  1, 1, 0;
  1, 1, 1, 0;
  1, 2, 1, 1, 0;
  1, 2, 3, 1, 1, 0;
  1, 3, 3, 4, 1, 1, 0;
  ...
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[Binomial(Floor((n+k-1)/2),k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 28 2016
  • Mathematica
    Table[Binomial[Floor[(n + k - 1)/2], k], {n, 0, 45}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 27 2016 *)

Formula

T(n,k) = binomial(floor((n+k-1)/2),k).
Sum_{k=0..n} T(n,k)*x^k = A122335(n-1), A039834(n-2), A000012(n), A000045(n+1), A001333(n), A003688(n), A015448(n), A015449(n), A015451(n), A015453(n), A015454(n), A015455(n), A015456(n), A015457(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively. - Philippe Deléham, Dec 17 2011
Sum_{k=0..n} T(n,k)*x^(n-k) = A152163(n), A000007(n), A000045(n+1), A026597(n), A122994(n+1), A158608(n), A122995(n+1), A158797(n), A122996(n+1), A158798(n), A158609(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Dec 17 2011
G.f.: (1+(1-y)*x)/(1-y*x-x^2). - Philippe Deléham, Dec 17 2011
T(n,k) = T(n-1,k-1) + T(n-2,k), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 09 2013