A153789 First differences of harmonic (or Ore) numbers A001599.
5, 22, 112, 130, 226, 176, 966, 1332, 3230, 1928, 62, 10410, 20, 9226, 2394, 2520, 23100, 49804, 12136, 49600, 6200, 63910, 4550, 90580, 27720, 179040, 156120, 30660, 27300, 197496, 138294, 332010, 118440, 638820, 50960, 60760, 166740
Offset: 1
Keywords
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..71
Crossrefs
Cf. A001599.
Programs
-
GAP
H:=Concatenation([1],Filtered([2,4..3*10^6],n->IsInt(n*Tau(n)/Sigma(n))));; a:=List([1..Length(H)-1],i->H[i+1]-H[i]);; Print(a); # Muniru A Asiru, Dec 23 2018
-
Mathematica
a := Select[Range[1000000], IntegerQ[HarmonicMean[Divisors[#]]] &]; Table[Part[a,n + 1] - Part[a,n], {n,1,30}] (* G. C. Greubel, Aug 29 2016 *)
-
Python
from numpy import diff from sympy import divisor_sigma as sigma def ore(n): return (n*sigma(n, 0))%sigma(n, 1) == 0 print(diff(list(filter(ore, range(1, 9000))))) # Michael S. Branicky, May 22 2021
Extensions
More terms from R. J. Mathar, Feb 19 2009