cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153876 a(n) = Sum_{i=2^(n-1)..2^n-1} sigma_0(i), sigma_0(i) number of divisors of n, n positive integer.

Original entry on oeis.org

1, 4, 11, 29, 68, 160, 364, 820, 1813, 3981, 8674, 18782, 40387, 86443, 184232, 391188, 827787, 1746443, 3674573, 7712561, 16151933, 33757505, 70422235, 146659055, 304947023, 633152157, 1312820598, 2718674046, 5623413203, 11618957217, 23982175093, 49452872529
Offset: 1

Views

Author

Ctibor O. Zizka, Jan 03 2009

Keywords

Comments

This sequence tells how many binary numbers with n digits are there in the multiplication matrix [1,...,2^n -1]x[1,...,2^n -1]. In general, counting how many base-B numbers of length n are there in the multiplication matrix [1,...,B^n -1]x[1,...,B^n -1] gives a(n)= sum_{i=B^(n-1),(B^n)-1} sigma_0(i). Besides this motivation it is interesting to see the behavior of partial sums of sigma_0(i) on growing intervals : a(n)= sum_{i=f(n-1),f(n)} sigma_0(i).

Crossrefs

Programs

  • PARI
    a(n) = sum(i=2^(n-1), 2^n-1, numdiv(i)); \\ Michel Marcus, Oct 10 2021
    
  • Python
    from math import isqrt
    def A153876(n): return ((t:=isqrt(b:=(1<Chai Wah Wu, Oct 23 2023

Formula

a(n) = A085831(n) - A085831(n-1)-1. - R. J. Mathar, Jan 05 2009
a(n) = Sum_{k>=1} k * A346730(n,k). - Alois P. Heinz, Aug 01 2021

Extensions

a(14)-a(32) from Alois P. Heinz, Aug 01 2021