A154144 Indices k such that 13 plus the k-th triangular number is a perfect square.
2, 8, 23, 53, 138, 312, 807, 1821, 4706, 10616, 27431, 61877, 159882, 360648, 931863, 2102013, 5431298, 12251432, 31655927, 71406581, 184504266, 416188056, 1075369671, 2425721757, 6267713762, 14138142488, 36530912903, 82403133173, 212917763658, 480280656552
Offset: 1
Keywords
Examples
2*(2+1)/2+13 = 4^2. 8*(8+1)/2+13 = 7^2. 23*(23+1)/2+13 = 17^2. 53*(53+1)/2+13 = 38^2.
Links
- F. T. Adams-Watters, SeqFan Discussion, Oct 2009
Programs
-
Mathematica
With[{nn=25000},Transpose[Select[Thread[{Range[nn],Accumulate[ Range[nn]]}], IntegerQ[Sqrt[#[[2]]+13]]&]][[1]]] (* Harvey P. Dale, Jan 13 2012 *) Join[{2, 8}, Select[Range[0, 1000], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 13 &]] (* G. C. Greubel, Sep 03 2016 *)
Formula
{k: 13+k*(k+1)/2 in A000290}.
Conjectures: (Start)
a(n) = +a(n-1) + 6*a(n-2) - 6*a(n-3) - a(n-4) + a(n-5).
G.f.: x*(2 +6*x +3*x^2 -6*x^3 -3*x^4)/((1-x) * (x^2-2*x-1) * (x^2+2*x-1))
G.f.: ( 6 + (-3-2*x)/(x^2+2*x-1) + 1/(x-1) + (8+19*x)/(x^2-2*x-1) )/2 . (End)
a(1..4) = (2,8,23,53); a(n) = 6*a(n-2) - a(n-4) + 2, for n>2. - Ctibor O. Zizka, Nov 10 2009
Extensions
a(16)-a(24) from Donovan Johnson, Nov 01 2010
a(25)-a(30) from Lars Blomberg, Jul 07 2015