cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154144 Indices k such that 13 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

2, 8, 23, 53, 138, 312, 807, 1821, 4706, 10616, 27431, 61877, 159882, 360648, 931863, 2102013, 5431298, 12251432, 31655927, 71406581, 184504266, 416188056, 1075369671, 2425721757, 6267713762, 14138142488, 36530912903, 82403133173, 212917763658, 480280656552
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Examples

			2*(2+1)/2+13 = 4^2. 8*(8+1)/2+13 = 7^2. 23*(23+1)/2+13 = 17^2. 53*(53+1)/2+13 = 38^2.
		

Crossrefs

Programs

  • Mathematica
    With[{nn=25000},Transpose[Select[Thread[{Range[nn],Accumulate[ Range[nn]]}], IntegerQ[Sqrt[#[[2]]+13]]&]][[1]]] (* Harvey P. Dale, Jan 13 2012 *)
    Join[{2, 8}, Select[Range[0, 1000], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 13 &]] (* G. C. Greubel, Sep 03 2016 *)

Formula

{k: 13+k*(k+1)/2 in A000290}.
Conjectures: (Start)
a(n) = +a(n-1) + 6*a(n-2) - 6*a(n-3) - a(n-4) + a(n-5).
G.f.: x*(2 +6*x +3*x^2 -6*x^3 -3*x^4)/((1-x) * (x^2-2*x-1) * (x^2+2*x-1))
G.f.: ( 6 + (-3-2*x)/(x^2+2*x-1) + 1/(x-1) + (8+19*x)/(x^2-2*x-1) )/2 . (End)
a(1..4) = (2,8,23,53); a(n) = 6*a(n-2) - a(n-4) + 2, for n>2. - Ctibor O. Zizka, Nov 10 2009

Extensions

a(16)-a(24) from Donovan Johnson, Nov 01 2010
a(25)-a(30) from Lars Blomberg, Jul 07 2015