cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154149 Indices k such that 22 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

2, 12, 27, 77, 162, 452, 947, 2637, 5522, 15372, 32187, 89597, 187602, 522212, 1093427, 3043677, 6372962, 17739852, 37144347, 103395437, 216493122, 602632772, 1261814387, 3512401197, 7354393202, 20471774412, 42864544827, 119318245277, 249832875762
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Examples

			2*(2+1)/2+22 = 5^2. 12*(12+1)/2+22 = 10^2. 27*(27+1)/2+22 = 20^2. 77*(77+1)/2+22 = 55^2.
		

Crossrefs

Programs

  • Mathematica
    Join[{2, 12}, Select[Range[0, 10^5], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 22 &]] (* or *) LinearRecurrence[{1,6,-6,-1,1}, {2,12,27,77,162}, 25] (* G. C. Greubel, Sep 03 2016 *)
  • PARI
    Vec(x*(-2-10*x-3*x^2+10*x^3+3*x^4)/((x-1)*(x^2-2*x-1)*(x^2+2*x-1)) + O(x^30)) \\ Colin Barker, Jul 11 2015

Formula

{k: 22+k*(k+1)/2 in A000290}
a(n)= +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
G.f.: x*(-2-10*x-3*x^2+10*x^3+3*x^4)/((x-1) * (x^2-2*x-1) * (x^2+2*x-1)).
G.f.: ( 6 + (10+25*x)/(x^2-2*x-1) - 5/(x^2+2*x-1) + 1/(x-1) )/2.

Extensions

Extended by D. S. McNeil, Dec 04 2010