A154221 A simple Pascal-like triangle.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 5, 5, 1, 1, 9, 9, 9, 9, 1, 1, 17, 17, 17, 17, 17, 1, 1, 33, 33, 33, 33, 33, 33, 1, 1, 65, 65, 65, 65, 65, 65, 65, 1, 1, 129, 129, 129, 129, 129, 129, 129, 129, 1, 1, 257, 257, 257, 257, 257, 257, 257, 257, 257, 1
Offset: 0
Examples
Triangle begins 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 5, 5, 1, 1, 9, 9, 9, 9, 1, 1, 17, 17, 17, 17, 17, 1, 1, 33, 33, 33, 33, 33, 33, 1, 1, 65, 65, 65, 65, 65, 65, 65, 1
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows
Programs
-
Magma
/* As triangle */ [[1+(2^(k-1)-0^k/2)*(2^(n-k-1)-0^(n-k)/2): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 06 2016
-
Maple
A154221 := proc(n,k) local f1,f2 ; f1 := 2^(k-1) ; if k = 0 then f1 := f1-1/2 ; end if; f2 := 2^(n-k-1) ; if n-k = 0 then f2 := f2-1/2 ; end if; 1+f1*f2 ; end proc: seq(seq(A154221(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Feb 05 2015
-
Mathematica
f[n_, k_] := 1 + (1/4)*(2^(k) - 0^k)*(2^(n - k) - 0^(n - k)); Table[f[n, i], {n, 0, 49}, {i, 0, n}] // Flatten (* G. C. Greubel, Sep 06 2016 *)
Formula
T(n,k)= 1 + (2^(k-1)-0^k/2)*(2^(n-k-1)-0^(n-k)/2).
Comments