A154223 Diagonal sums of number triangle A154221.
1, 1, 2, 3, 5, 9, 16, 32, 61, 125, 246, 502, 999, 2023, 4040, 8136, 16265, 32649, 65290, 130826, 261643, 523787, 1047564, 2096140, 4192269, 8386573, 16773134, 33550350, 67100687, 134209551, 268419088, 536854544, 1073709073, 2147450897, 4294901778, 8589869074, 17179738131, 34359607315, 68719214612, 137438691348
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,1,-9,4,6,-4).
Programs
-
Magma
I:=[1,1,2,3,5,9,16]; [n le 7 select I[n] else 3*Self(n-1)+Self(n-2)-9*Self(n-3)+4*Self(n-4)+6*Self(n-5)-4*Self(n-6): n in [1..40]]; // Vincenzo Librandi, Sep 07 2016
-
Maple
A154223 := proc(n) a := 0 ; for npr from n by -1 do k := n-npr ; if k <= npr then a := a+A154221(npr,k) ; else return a; end if; end do: end proc: # R. J. Mathar, Feb 05 2015
-
Mathematica
Join[{1}, LinearRecurrence[{3, 1, -9, 4, 6, -4}, {1, 2, 3, 5, 9, 16}, 25]] (* G. C. Greubel, Sep 06 2016 *)
-
PARI
Vec((1-x-x^2)*(1-x-2*x^2+2*x^3-x^4)/((1-x)^2*(1+x)*(1-2*x)*(1-2*x^2)) + O(x^40)) \\ Colin Barker, Sep 07 2016
Formula
G.f.: (1 - x - x^2)*(1 - x - 2*x^2 + 2*x^3 - x^4) / ((1-x)^2*(1+x)*(1-2*x)*(1-2*x^2)). - Colin Barker, Sep 07 2016