A154257
Number of triples such that p+F_s+F_t=n, where p is an odd prime, s and t are greater than one and the Fibonacci number F_s or F_t is odd.
0, 0, 0, 0, 1, 2, 3, 4, 6, 6, 7, 6, 7, 8, 6, 10, 8, 10, 10, 10, 12, 10, 10, 10, 12, 14, 13, 12, 15, 8, 12, 12, 13, 14, 13, 10, 16, 10, 13, 16, 11, 16, 11, 14, 17, 16, 15, 12, 12, 16, 11, 20, 13, 14, 13, 12, 12, 18, 12, 16, 14, 14, 19, 16, 18, 20, 16, 18, 15, 18, 16, 12, 16, 18, 19, 22, 18
Offset: 1
Keywords
Examples
For n=9 the a(9)=6 solutions are 3 + F_4 + F_4, 3 + F_2 + F_5, 3 + F_5 + F_2, 5 + F_3 + F_3, 5 + F_2 + F_4, 5 + F_4 + F_2.
References
- R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36(1971), 103-107.
- Z. W. Sun and M. H. Le, Integers not of the form c(2^a+2^b)+p^{alpha}, Acta Arith. 99(2001), 183-190.
Links
- Zhi-Wei Sun, Table of n, a(n), n=1..50000.
- D. S. McNeil, Sun's strong conjecture
- Zhi-Wei Sun, A promising conjecture: n=p+F_s+F_t
- Zhi-Wei Sun, A summary concerning my conjecture n=p+F_s+F_t (II)
- K. J. Wu and Z.-W. Sun, Covers of the integers with odd moduli and their applications to the forms x^m-2^n and x^2-F_{3n}/2, Math. Comp. 78 (2009) 1853, [DOI], arXiv:math.NT/0702382
Programs
-
Mathematica
PQ[m_]:=m>2&&PrimeQ[m] RN[n_]:=Sum[If[(Mod[n,2]==0||Mod[x,3]>0)&&PQ[n-Fibonacci[x]-Fibonacci[y]],1,0], {x,2,2*Log[2,Max[2,n]]},{y,2,2*Log[2,Max[2,n-Fibonacci[x]]]}] Do[Print[n," ",RN[n]];Continue,{n,1,50000}]
Extensions
The new verification record is 10^14 (due to D. S. McNeil). - Zhi-Wei Sun, Jan 17 2009
Comments