A154285
Number of ordered triples satisfying p+L_s+L_t=n, where p is an odd prime, s and t are nonnegative and the Lucas number L_s or L_t is odd.
Keywords
Examples
For n=3 the a(7)=4 solutions are 3+L_1+L_2, 3+L_2+L_1, 5+L_1+L_1.
References
- R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36(1971), 103-107.
- Z. W. Sun and M. H. Le, Integers not of the form c(2^a+2^b)+p^{alpha}, Acta Arith. 99(2001), 183-190.
Links
- Zhi-Wei SUN, Table of n, a(n), n=1..50000.
- D. S. McNeil, Sun's strong conjecture
- Zhi-Wei Sun, A summary concerning my conjecture n=p+F_s+F_t
- Zhi-Wei Sun, A summary concerning my conjecture n=p+F_s+F_t (II)
- K. J. Wu and Z. W. Sun, Covers of the integers with odd moduli and their applications to the forms x^m-2^n and x^2-F_{3n}/2, Math. Comp. 78 (2009) 1853, arXiv:math.NT/0702382
Programs
-
Mathematica
PQ[m_]:=m>2&&PrimeQ[m] RN[n_]:=Sum[If[(Mod[n,2]==0||Mod[x,3]>0)&&PQ[n-(2*Fibonacci[x+1]-Fibonacci[x])-(2*Fibonacci[y+1]-Fibonacci[y])],1,0], {x,0,2*Log[2,n]},{y,0,2*Log[2,Max[1,n-(2*Fibonacci[x+1]-Fibonacci[x])]]}] Do[Print[n," ",RN[n]];Continue,{n,1,50000}]
Comments