A154282 Dirichlet inverse of A154281.
1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Links
- Mats Granvik, Table of n, a(n) for n = 1..1500
Programs
-
Mathematica
nn = 95; a = PadRight[{1, 0, 0, 1}, nn, 0]; Inverse[Table[Table[If[Mod[n, k] == 0, a[[n/k]], 0], {k, 1, nn}], {n, 1, nn}]][[All, 1]] (* Mats Granvik, Jul 23 2017 *)
-
PARI
a(n) = {my(e=valuation(n,2)); if(e%2 == 0 && n == 1<
Andrew Howroyd, Aug 05 2018
Formula
Multiplicative with a(2^e) = (-1)^(e/2) if e is even and 0 is e is odd, and a(p^e) = 0 if p is an odd prime. - Amiram Eldar, Aug 27 2023
Comments