cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A154269 Dirichlet inverse of A019590; Fully multiplicative with a(2^e) = (-1)^e, a(p^e) = 0 for odd primes p.

Original entry on oeis.org

1, -1, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Mats Granvik, Jan 06 2009

Keywords

Comments

Equals +1 if n is an even power of 2 (2^0, 2^2, 2^4,...), -1 if n is an odd power of 2 (2^1, 2^3, 2^5,..) and zero anywhere else.
Mobius transform of A035263. - R. J. Mathar, Jul 14 2012

Examples

			x - x^2 + x^4 - x^8 + x^16 - x^32 + x^64 - x^128 + x^256 - x^512 + ...
		

Crossrefs

Cf. A209229 (gives the absolute values).

Programs

  • Maple
    a:= n-> (p-> `if`(2^p=n, (-1)^p, 0))(ilog2(n)):
    seq(a(n), n=1..95);  # Alois P. Heinz, Feb 18 2024
  • Mathematica
    nn = 95;a = PadRight[{1, 1}, nn, 0];Inverse[Table[Table[If[Mod[n, k] == 0, a[[n/k]], 0], {k, 1, nn}], {n, 1, nn}]][[All, 1]] (* Mats Granvik, Jul 24 2017 *)
  • PARI
    {a(n) = if( n < 2, n == 1, - a(n / 2))} /* Michael Somos, Jul 05 2009 */
    
  • Scheme
    (define (A154269 n) (cond ((= 1 n) 1) ((even? n) (* -1 (A154269 (/ n 2)))) (else 0))) ;; Antti Karttunen, Jul 24 2017

Formula

Abs(a(n)) = A036987(n-1) = A209229(n).
a(n) is multiplicative with a(2^e) = (-1)^e, a(p^e) = 0^e if p>2. - Michael Somos, Jul 05 2009
G.f. A(x) satisfies x = A(x) + A(x^2).
Dirichlet g.f.: (1 + 2^(-s))^(-1). - Michael Somos, Jul 05 2009
a(1) = 1, after which: a(2n) = -a(n), a(2n+1) = 0. - Antti Karttunen, Jul 24 2017
a(n) = Sum_{d|n} A323239(d)*A008836(n/d). - Ridouane Oudra, Jul 15 2025

Extensions

Alternative description added to the name by Antti Karttunen, Jul 24 2017

A154271 Dirichlet inverse of A154272; Fully multiplicative with a(3^e) = (-1)^e, a(p^e) = 0 for primes p <> 3.

Original entry on oeis.org

1, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Mats Granvik, Jan 06 2009

Keywords

Comments

Abs(A154272) is a Fredholm-Rueppel-like sequence.
Sequence equals +1 if n is an even power of 3 (3^0, 3^2, 3^4,...), equals -1 if n is an odd power of 3 (3^1, 3^3, 3^5, 3^7,...) and zero elsewhere. - Comment edited by R. J. Mathar, Jun 24 2013

Crossrefs

Cf. A154272, A154269, A014578 (Möbius inverse), A154282, A225569.
Cf. A225569 (gives the absolute values when interpreted as the characteristic function of powers of 3, i.e., with starting offset 1 instead of 0).

Programs

  • Mathematica
    nn = 95;a = PadRight[{1, 0, 1}, nn, 0];Inverse[Table[Table[If[Mod[n, k] == 0, a[[n/k]], 0], {k, 1, nn}], {n, 1, nn}]][[All, 1]] (* Mats Granvik, Jul 24 2017 *)
  • PARI
    A154271(n) = { my(k=valuation(n,3)); if((3^k)==n,(-1)^k,0); }; \\ Antti Karttunen, Jul 24 2017
    
  • Scheme
    (define (A154271 n) (cond ((= 1 n) 1) ((zero? (modulo n 3)) (* -1 (A154271 (/ n 3)))) (else 0))) ;; Antti Karttunen, Jul 24 2017

Formula

Fully multiplicative with a(3) = -1, a(p) = 0 for primes p <> 3. - Antti Karttunen, Jul 24 2017
From Amiram Eldar, Nov 03 2023: (Start)
abs(a(n)) = A225569(n-1).
Dirichlet g.f.: 1/(1+3^(-s)). (End)
a(n) = Sum_{d|n} A359377(d)*A008836(n/d). - Ridouane Oudra, Jul 15 2025

Extensions

Alternative description added to the name by Antti Karttunen, Jul 24 2017

A154281 1,0,0,1 followed by 0,0,0...

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Mats Granvik, Jan 06 2009

Keywords

Comments

Dirichlet inverse of this sequence is A154282.

Crossrefs

Programs

Formula

Multiplicative with a(2^2) = 1, a(2^e) = 0 for e<>2, a(p^e) = 0 for odd prime p. - Andrew Howroyd, Aug 05 2018
Showing 1-3 of 3 results.