A154324 Diagonal sums of number triangle A113582.
1, 1, 2, 3, 6, 12, 23, 43, 74, 124, 195, 300, 441, 637, 890, 1226, 1647, 2187, 2848, 3673, 4664, 5874, 7305, 9021, 11024, 13390, 16121, 19306, 22947, 27147, 31908, 37348, 43469, 50405, 58158, 66879, 76570, 87400, 99371, 112671, 127302, 143472, 161183, 180664
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,-8,6,6,-8,0,3,-1).
Programs
-
Mathematica
LinearRecurrence[{3,0,-8,6,6,-8,0,3,-1}, {1,1,2,3,6,12,23,43,74}, 25] (* G. C. Greubel, Sep 11 2016 *) CoefficientList[Series[(1 - 2 x - x^2 + 5 x^3 - x^4 - 2 x^5 + x^6) / ((1 - x) (1 - x^2))^3, {x, 0, 50}], x] (* Vincenzo Librandi, Sep 12 2016 *)
-
PARI
Vec((1-2*x-x^2+5*x^3-x^4-2*x^5+x^6) / ((1-x)^6*(1+x)^3) + O(x^60)) \\ Colin Barker, Sep 12 2016
Formula
G.f.: (1 -2*x -x^2 +5*x^3 -x^4 -2*x^5 +x^6)/((1-x)*(1-x^2))^3.
a(n) = Sum_{k=0..floor(n/2)} ( 1 + C(k+1,2)*C(n-2k+1,2) ).
From Colin Barker, Sep 12 2016: (Start)
a(n) = (2895 + 945*(-1)^n + (1786-90*(-1)^n)*n - 30*(3+(-1)^n)*n^2 + 40*n^3 + 30*n^4 + 4*n^5)/3840.
a(n) = (2*n^5+15*n^4+20*n^3-60*n^2+848*n+1920)/1920 for n even.
a(n) = (2*n^5+15*n^4+20*n^3-30*n^2+938*n+975)/1920 for n odd. (End)