cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154324 Diagonal sums of number triangle A113582.

Original entry on oeis.org

1, 1, 2, 3, 6, 12, 23, 43, 74, 124, 195, 300, 441, 637, 890, 1226, 1647, 2187, 2848, 3673, 4664, 5874, 7305, 9021, 11024, 13390, 16121, 19306, 22947, 27147, 31908, 37348, 43469, 50405, 58158, 66879, 76570, 87400, 99371, 112671, 127302, 143472, 161183, 180664
Offset: 0

Views

Author

Paul Barry, Jan 07 2009

Keywords

Programs

  • Mathematica
    LinearRecurrence[{3,0,-8,6,6,-8,0,3,-1}, {1,1,2,3,6,12,23,43,74}, 25] (* G. C. Greubel, Sep 11 2016 *)
    CoefficientList[Series[(1 - 2 x - x^2 + 5 x^3 - x^4 - 2 x^5 + x^6) / ((1 - x) (1 - x^2))^3, {x, 0, 50}], x] (* Vincenzo Librandi, Sep 12 2016 *)
  • PARI
    Vec((1-2*x-x^2+5*x^3-x^4-2*x^5+x^6) / ((1-x)^6*(1+x)^3) + O(x^60)) \\ Colin Barker, Sep 12 2016

Formula

G.f.: (1 -2*x -x^2 +5*x^3 -x^4 -2*x^5 +x^6)/((1-x)*(1-x^2))^3.
a(n) = Sum_{k=0..floor(n/2)} ( 1 + C(k+1,2)*C(n-2k+1,2) ).
From Colin Barker, Sep 12 2016: (Start)
a(n) = (2895 + 945*(-1)^n + (1786-90*(-1)^n)*n - 30*(3+(-1)^n)*n^2 + 40*n^3 + 30*n^4 + 4*n^5)/3840.
a(n) = (2*n^5+15*n^4+20*n^3-60*n^2+848*n+1920)/1920 for n even.
a(n) = (2*n^5+15*n^4+20*n^3-30*n^2+938*n+975)/1920 for n odd. (End)