A154376 a(n) = 25*n^2 - 2*n.
23, 96, 219, 392, 615, 888, 1211, 1584, 2007, 2480, 3003, 3576, 4199, 4872, 5595, 6368, 7191, 8064, 8987, 9960, 10983, 12056, 13179, 14352, 15575, 16848, 18171, 19544, 20967, 22440, 23963, 25536, 27159, 28832, 30555, 32328, 34151, 36024
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
LinearRecurrence[{3, -3, 1}, {23, 96, 219}, 50] (* Vincenzo Librandi, Jan 30 2012 *)
-
PARI
a(n)=25*n^2-2*n \\ Charles R Greathouse IV, Dec 26 2011
Formula
From Vincenzo Librandi, Jan 30 2012: (Start)
G.f.: x*(23 + 27*x)/(1-x)^3.
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). (End)
E.g.f.: (25*x^2 + 23*x)*exp(x). - G. C. Greubel, Sep 15 2016
Comments