cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154418 Primes p such that (p^2 + 4)/5 is prime.

Original entry on oeis.org

19, 31, 41, 71, 79, 109, 131, 149, 151, 181, 191, 241, 251, 379, 409, 421, 499, 509, 541, 599, 631, 659, 709, 719, 769, 919, 1009, 1019, 1021, 1031, 1109, 1129, 1151, 1201, 1231, 1291, 1399, 1409, 1451, 1549, 1601, 1621, 1721, 1871, 1931, 2069, 2131, 2179
Offset: 1

Views

Author

Vincenzo Librandi, Jan 09 2009, Dec 13 2010

Keywords

Comments

The primes (p^2 + 4)/5 are 73, 193, 337, 1009, 1249, etc.
All terms == 1 or 9 (mod 10). - Robert Israel, Sep 16 2016

Programs

  • Magma
    [p: p in PrimesInInterval(7, 2500) | IsPrime((p^2+4) div 5)]; // Vincenzo Librandi, Oct 15 2012
  • Maple
    select(p -> isprime(p) and isprime((p^2+4)/5), [seq(seq(10*i+j,j=[1,9]),i=0..1000)]); # Robert Israel, Sep 16 2016
  • Mathematica
    Select[Prime[Range[200]], PrimeQ[(#^2 + 4)/5] &] (* Vincenzo Librandi, Oct 15 2012 *)

Extensions

Corrected and extended by Zak Seidov, Jan 13 2009