cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154515 a(n) = 648*n^2 + 72*n + 1.

Original entry on oeis.org

721, 2737, 6049, 10657, 16561, 23761, 32257, 42049, 53137, 65521, 79201, 94177, 110449, 128017, 146881, 167041, 188497, 211249, 235297, 260641, 287281, 315217, 344449, 374977, 406801, 439921, 474337, 510049, 547057, 585361, 624961, 665857, 708049, 751537
Offset: 1

Views

Author

Vincenzo Librandi, Jan 11 2009

Keywords

Comments

The identity (648*n^2 + 72*n + 1)^2 - (9*n^2 + n)*(216*n + 12)^2 = 1 can be written as a(n)^2 - A154517(n)*A154519(n)^2 = 1. This is the case s=3 of the identity (8*n^2*s^4 + 8*n*s^2 + 1)^2 - (n^2*s^2 + n)*(8*n*s^3 + 4*s)^2 = 1. - Vincenzo Librandi, Jan 30 2012

Crossrefs

Programs

  • Magma
    I:=[721, 2737, 6049]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 30 2012
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {721, 2737, 6049}, 50] (* Vincenzo Librandi, Jan 30 2012 *)
  • PARI
    a(n)=648*n^2+72*n+1 \\ Charles R Greathouse IV, Dec 27 2011
    

Formula

From Colin Barker, Jan 25 2012: (Start)
G.f.: x*(721 + 574*x + x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=721, a(2)=2737, a(3)=6049. (End)
a(n) = 2*A161705(n)^2 - 1. - Bruno Berselli, Jan 31 2012