A154519 a(n) = 216*n + 12.
228, 444, 660, 876, 1092, 1308, 1524, 1740, 1956, 2172, 2388, 2604, 2820, 3036, 3252, 3468, 3684, 3900, 4116, 4332, 4548, 4764, 4980, 5196, 5412, 5628, 5844, 6060, 6276, 6492, 6708, 6924, 7140, 7356, 7572, 7788, 8004, 8220, 8436, 8652
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Magma
I:=[228, 444]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Jan 30 2012
-
Mathematica
LinearRecurrence[{2, -1}, {228, 444}, 50] (* Vincenzo Librandi, Jan 30 2012 *)
-
PARI
a(n)=216*n+12 \\ Charles R Greathouse IV, Dec 27 2011
Formula
G.f.: x*(228 - 12*x)/(x-1)^2. - Vincenzo Librandi, Jan 30 2012 [corrected by Georg Fischer, May 12 2019]
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jan 30 2012
a(n) = 12*A161705(n). - Michel Marcus, Aug 19 2018
Comments