cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154571 Numbers that are congruent to {0, 3, 4, 5, 7, 8} mod 12.

Original entry on oeis.org

0, 3, 4, 5, 7, 8, 12, 15, 16, 17, 19, 20, 24, 27, 28, 29, 31, 32, 36, 39, 40, 41, 43, 44, 48, 51, 52, 53, 55, 56, 60, 63, 64, 65, 67, 68, 72, 75, 76, 77, 79, 80, 84, 87, 88, 89, 91, 92, 96, 99, 100, 101, 103, 104, 108, 111, 112, 113, 115, 116, 120, 123, 124
Offset: 1

Views

Author

Omar E. Pol, Jan 12 2009

Keywords

Crossrefs

Cf. A113829.

Programs

  • Magma
    [n : n in [0..150] | n mod 12 in [0, 3, 4, 5, 7, 8]]; // Wesley Ivan Hurt, May 29 2016
  • Maple
    A154571:=n->(12*n-15-cos(n*Pi)-5*cos(n*Pi/3)-sqrt(3)*(2*cos((1-4*n)*Pi/6)-3*sin(n*Pi/3)))/6: seq(A154571(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 3, 4, 5, 7, 8, 12}, 50] (* G. C. Greubel, May 29 2016 *)

Formula

From Chai Wah Wu, May 29 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
G.f.: x^2*(4*x^5 + x^4 + 2*x^3 + x^2 + x + 3)/(x^7 - x^6 - x + 1). (End)
From Wesley Ivan Hurt, Jun 16 2016: (Start)
a(n) = (12*n - 15 - cos(n*Pi) - 5*cos(n*Pi/3) - sqrt(3)*(2*cos((1-4*n)*Pi/6) - 3*sin(n*Pi/3)))/6.
a(6k) = 12k-4, a(6k-1) = 12k-5, a(6k-2) = 12k-7, a(6k-3) = 12k-8, a(6k-4) = 12k-9, a(6k-5) = 12k-12. (End)
Sum_{n>=2} (-1)^n/a(n) = (15-8*sqrt(3))*Pi/72 + log(2)/4. - Amiram Eldar, Dec 31 2021