A154571 Numbers that are congruent to {0, 3, 4, 5, 7, 8} mod 12.
0, 3, 4, 5, 7, 8, 12, 15, 16, 17, 19, 20, 24, 27, 28, 29, 31, 32, 36, 39, 40, 41, 43, 44, 48, 51, 52, 53, 55, 56, 60, 63, 64, 65, 67, 68, 72, 75, 76, 77, 79, 80, 84, 87, 88, 89, 91, 92, 96, 99, 100, 101, 103, 104, 108, 111, 112, 113, 115, 116, 120, 123, 124
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
Crossrefs
Cf. A113829.
Programs
-
Magma
[n : n in [0..150] | n mod 12 in [0, 3, 4, 5, 7, 8]]; // Wesley Ivan Hurt, May 29 2016
-
Maple
A154571:=n->(12*n-15-cos(n*Pi)-5*cos(n*Pi/3)-sqrt(3)*(2*cos((1-4*n)*Pi/6)-3*sin(n*Pi/3)))/6: seq(A154571(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
-
Mathematica
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 3, 4, 5, 7, 8, 12}, 50] (* G. C. Greubel, May 29 2016 *)
Formula
From Chai Wah Wu, May 29 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
G.f.: x^2*(4*x^5 + x^4 + 2*x^3 + x^2 + x + 3)/(x^7 - x^6 - x + 1). (End)
From Wesley Ivan Hurt, Jun 16 2016: (Start)
a(n) = (12*n - 15 - cos(n*Pi) - 5*cos(n*Pi/3) - sqrt(3)*(2*cos((1-4*n)*Pi/6) - 3*sin(n*Pi/3)))/6.
a(6k) = 12k-4, a(6k-1) = 12k-5, a(6k-2) = 12k-7, a(6k-3) = 12k-8, a(6k-4) = 12k-9, a(6k-5) = 12k-12. (End)
Sum_{n>=2} (-1)^n/a(n) = (15-8*sqrt(3))*Pi/72 + log(2)/4. - Amiram Eldar, Dec 31 2021