cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154590 a(n) = 2*n^2 + 16*n + 6.

Original entry on oeis.org

24, 46, 72, 102, 136, 174, 216, 262, 312, 366, 424, 486, 552, 622, 696, 774, 856, 942, 1032, 1126, 1224, 1326, 1432, 1542, 1656, 1774, 1896, 2022, 2152, 2286, 2424, 2566, 2712, 2862, 3016, 3174, 3336, 3502, 3672, 3846, 4024, 4206, 4392, 4582, 4776, 4974, 5176
Offset: 1

Views

Author

Vincenzo Librandi, Jan 12 2009

Keywords

Comments

Eighth diagonal of A144562.
2*a(n) + 52 is a square.

Crossrefs

Programs

  • Mathematica
    Table[2n^2+16n+6,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{24,46,72},50] (* Harvey P. Dale, Dec 27 2011 *)
  • PARI
    a(n)=2*n^2+16*n+6 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 2*A116711(n+3).
G.f.: -2*x*(3*x-4)*(x-3)/(x-1)^3.
From Amiram Eldar, Mar 02 2023: (Start)
Sum_{n>=1} 1/a(n) = 35/468 - cot(sqrt(13)*Pi)*Pi/(4*sqrt(13)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 121/468 + cosec(sqrt(13)*Pi)*Pi/(4*sqrt(13)). (End)
From Elmo R. Oliveira, Jun 04 2025: (Start)
E.g.f.: 2*(exp(x)*(x^2 + 9*x + 3) - 3).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

Extensions

Corrected (a(31) added) by Harvey P. Dale, Dec 27 2011