A154593 A triangle of polynomial coefficients:{a, b, c, d} = {2, 3, 3, 2}; p(x,n)=(-1)^(n)*(1 - d - c x)^(n + 1)*Sum[(a*k + b)^n*(c*x + d)^k, {k, 0, Infinity}].
1, -1, 3, 9, 6, 9, -73, -75, 9, 27, 849, 1644, 774, 108, 81, -12241, -33849, -28098, -6426, 243, 243, 211929, 763314, 938007, 442044, 60183, 1458, 729, -4280473, -18995271, -31035393, -22471479, -6681123, -528525, 3645, 2187, 98806689, 521068632, 1064559708, 1049509224, 501783174, 99717480, 4802652, 17496, 6561
Offset: 0
Examples
Triangle begins: {1}, {-1, 3}, {9, 6, 9}, {-73, -75, 9, 27}, {849, 1644, 774, 108, 81}, {-12241, -33849, -28098, -6426, 243, 243}, {211929, 763314, 938007, 442044, 60183, 1458, 729}, {-4280473, -18995271, -31035393, -22471479, -6681123, -528525, 3645, 2187}, {98806689, 521068632, 1064559708, 1049509224, 501783174, 99717480, 4802652, 17496, 6561}, ...
Programs
-
Mathematica
Clear[p, a, b, c, d, n]; {a, b, c, d} = {2, 3, 3, 2}; p[x_, n_] = (-1)^(n)*(1 - d - c x)^(n + 1)*Sum[(a*k + b)^n*(c*x + d)^k, {k, 0, Infinity}]; Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}]; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; Flatten[%]
Formula
{a, b, c, d} = {2, 3, 3, 2};
p(x,n)=(-1)^(n)*(1 - d - c x)^(n + 1)*Sum[(a*k + b)^n*(c*x + d)^k, {k, 0, Infinity}];
t(n,m)=coefficients(p(x,n)).
p(x,n)=(-2)^n *(-1 - 3 x)^(1 + n)* LerchPhi[2 + 3 x, -n, 3/2]
Comments