cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154600 a(n) = 2*n^2 + 22*n + 9.

Original entry on oeis.org

33, 61, 93, 129, 169, 213, 261, 313, 369, 429, 493, 561, 633, 709, 789, 873, 961, 1053, 1149, 1249, 1353, 1461, 1573, 1689, 1809, 1933, 2061, 2193, 2329, 2469, 2613, 2761, 2913, 3069, 3229, 3393, 3561, 3733, 3909, 4089, 4273, 4461, 4653, 4849, 5049, 5253
Offset: 1

Views

Author

Vincenzo Librandi, Jan 12 2009

Keywords

Comments

Eleventh diagonal of A144562.
2*a(n) + 103 is a square.

Crossrefs

Cf. A144562.

Programs

  • Magma
    I:=[33, 61, 93]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 26 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {33, 61, 93}, 50] (* Vincenzo Librandi, Feb 26 2012 *)
    4*Binomial[Range[50]+6,2] - 51 (* G. C. Greubel, May 30 2024 *)
  • PARI
    a(n)=2*n*(n+22)+9 \\ Charles R Greathouse IV, Jan 11 2012
    
  • SageMath
    [2*n^2+22*n+9 for n in range(1,51)] # G. C. Greubel, May 30 2024

Formula

From Vincenzo Librandi, Feb 26 2012: (Start)
G.f: x*(33 - 38*x + 9*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
Sum_{n>=1} 1/a(n) = 257162/3084939 + tan(sqrt(103)*Pi/2)*Pi/(2*sqrt(103)). - Amiram Eldar, Feb 25 2023
E.g.f.: -9 + (9 + 24*x + 2*x^2)*exp(x). - G. C. Greubel, May 30 2024