A154626 a(n) = 2^n*A001519(n).
1, 2, 8, 40, 208, 1088, 5696, 29824, 156160, 817664, 4281344, 22417408, 117379072, 614604800, 3218112512, 16850255872, 88229085184, 461973487616, 2418924584960, 12665653559296, 66318223015936, 347246723858432, 1818207451086848, 9520257811087360
Offset: 0
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 0..1000
- Bishal Deb, Cyclic sieving phenomena via combinatorics of continued fractions, arXiv:2508.13709 [math.CO], 2025. See p. 42.
- Index entries for linear recurrences with constant coefficients, signature (6,-4).
Programs
-
Magma
[n le 2 select (n) else 6*Self(n-1)-4*Self(n-2): n in [1..25]]; // Vincenzo Librandi, May 15 2015
-
Mathematica
LinearRecurrence[{6, -4}, {1, 2}, 30] (* Vincenzo Librandi, May 15 2015 *)
-
PARI
Vec((1-4*x) / (1-6*x+4*x^2) + O(x^30)) \\ Colin Barker, Sep 22 2017
Formula
G.f.: (1 - 4*x) / (1 - 6*x + 4*x^2).
From Colin Barker, Sep 22 2017: (Start)
a(n) = (((3-sqrt(5))^n*(1+sqrt(5)) + (-1+sqrt(5))*(3+sqrt(5))^n)) / (2*sqrt(5)).
a(n) = 6*a(n-1) - 4*a(n-2) for n>1. (End)
E.g.f.: exp(3*x)*(5*cosh(sqrt(5)*x) - sqrt(5)*sinh(sqrt(5)*x))/5. - Stefano Spezia, Aug 26 2025
Comments