cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154632 Odd primes p such that (4*p^2-8*p-9)/3 is a prime.

Original entry on oeis.org

5, 17, 23, 41, 59, 71, 89, 149, 197, 233, 239, 347, 359, 401, 419, 449, 563, 683, 761, 773, 827, 887, 971, 977, 1049, 1061, 1097, 1193, 1277, 1373, 1439, 1553, 1571, 1787, 1871, 1877, 1931, 2069, 2267, 2273, 2381, 2417, 2447, 2687, 2699, 2777, 2843, 2957
Offset: 1

Views

Author

Vincenzo Librandi, Jan 18 2009

Keywords

Examples

			For p=5, (4*p^2-8*p-9)/3 = 17; for p=149, (4*p^2-8*p-9)/3 = 29201.
		

Crossrefs

Cf. A154616.
Subsequence of A007528.

Programs

  • Maple
    a := proc (n) if isprime(n) = true and type((4/3)*n^2-(8/3)*n-3, integer) = true and isprime((4/3)*n^2-(8/3)*n-3) = true then n else end if end proc: seq(a(n), n = 2 .. 4000); # Emeric Deutsch, Jan 20 2009
  • Mathematica
    Select[Prime[Range[2, 500]], PrimeQ[(4 #^2 - 8 # - 9)/3] &] (* Harvey P. Dale, May 20 2012 *)

Extensions

Extended by Emeric Deutsch, Jan 20 2009
Formatting of definition clarified by Harvey P. Dale, May 20 2012