cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154633 a(n) = (4*n+1)*(4*n+3)*(4*n+5)*(4*n+7).

Original entry on oeis.org

105, 3465, 19305, 62985, 156009, 326025, 606825, 1038345, 1666665, 2544009, 3728745, 5285385, 7284585, 9803145, 12924009, 16736265, 21335145, 26822025, 33304425, 40896009, 49716585, 59892105, 71554665, 84842505, 99900009, 116877705, 135932265, 157226505, 180929385
Offset: 0

Views

Author

Jaume Oliver Lafont, Jan 13 2009

Keywords

Comments

3 divides a(n).
For n=5k, 5k+1, 5k+2 and 5k+3, a(n) is a multiple of 5. For n=5k+4, a(n)-9 is a multiple of 100. - Michel Marcus, Aug 21 2013

Crossrefs

Programs

  • Mathematica
    a[n_] := (4*n + 1)*(4*n + 3)*(4*n + 5)*(4*n + 7); Array[a, 40, 0] (* Amiram Eldar, Feb 27 2022 *)
  • PARI
    a(n) = (4*n+1)*(4*n+3)*(4*n+5)*(4*n+7); \\ Michel Marcus, Aug 21 2013

Formula

Sum_{n>=0} 1/a(n) = (3*Pi - 8)/144.
G.f.: 3*(35 + 980*x + 1010*x^2 + 20*x^3 + 3*x^4)/(1-x)^5.
a(n) = (4*n+1)*(4*n+3)*(4*n+5)*(4*n+7).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
Sum_{n>=0} (-1)^n/a(n) = 1/18 - Pi/(48*sqrt(2)). - Amiram Eldar, Feb 27 2022