A154635 Ratio of the sum of the bends of the 5-dimensional spheres added in the n-th generation of Apollonian packing to the sum of the bends of the initial configuration of seven mutually tangent spheres.
1, 2, 15, 108, 774, 5544, 39708, 284400, 2036952, 14589216, 104492016, 748400832, 5360254560, 38391631488, 274971524544, 1969422407424, 14105550112128, 101027866452480, 723589630947072, 5182549848861696, 37118861005211136, 265855588948518912
Offset: 0
Examples
Starting with seven 5-dimensional spheres with bends 0,0,1,1,1,1,1 summing to 5, the first derived generation has seven spheres, with bends 1,1,1,1,1,5/2,5/2 summing to 10. So a(1) = 10/5 = 2.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Colin Mallows, Growing Apollonian packings, J. Integer Sequences v.12, article 09.2.1 (2009).
- Index entries for linear recurrences with constant coefficients, signature (8,-6).
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[(1 - z) (1 - 5 z)/(1 - 8 z + 6 z^2), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *)
-
PARI
Vec((1-x)*(1-5*x)/(1-8*x+6*x^2) + O(x^30)) \\ Colin Barker, Nov 16 2016
Formula
G.f. (1-x)*(1-5*x) / (1-8*x+6*x^2).
From Colin Barker, Nov 16 2016: (Start)
a(n) = (((4-sqrt(10))^n*(-8+sqrt(10))+(4+sqrt(10))^n*(8+sqrt(10))))/(12*sqrt(10)) for n>0.
a(n) = 8*a(n-1) - 6*a(n-2) for n>2.
(End)