A154646 Triangle T(n,k) with the coefficient [x^k] of the series (1-x)^(n+1)* sum_{m=0..infinity} [(3*m+1)^n + (3*m+2)^n]*x^m in row n, column k.
2, 3, 3, 5, 26, 5, 9, 153, 153, 9, 17, 796, 2262, 796, 17, 33, 3951, 25176, 25176, 3951, 33, 65, 19266, 243111, 524876, 243111, 19266, 65, 129, 93477, 2168235, 8760639, 8760639, 2168235, 93477, 129, 257, 453848, 18445820, 127880936, 235517318
Offset: 0
Examples
2; 3, 3; 5, 26, 5; 9, 153, 153, 9; 17, 796, 2262, 796, 17; 33, 3951, 25176, 25176, 3951, 33; 65, 19266, 243111, 524876, 243111, 19266, 65; 129, 93477, 2168235, 8760639, 8760639, 2168235, 93477, 129; 257, 453848, 18445820, 127880936, 235517318, 127880936, 18445820, 453848, 257;
Programs
-
Maple
A154646 := proc(n,k) (-1)^(n+1)*(x-1)^(n+1)*add(x^j*((3*j+1)^n+(3*j+2)^n),j=0..k) ; coeftayl(%,x=0,k) ; end proc: # R. J. Mathar, Jul 23 2012
-
Mathematica
Clear[p]; p[x_, n_] = (-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(3*m + 2)^n*x^m, {m, 0, Infinity}] + (-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(3*m + 1)^n*x^m, {m, 0, Infinity}]; Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}]; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; Flatten[%] Contribution from Roger L. Bagula, Nov 27 2009: (Start) p[t_] = Exp[t]*x/((-Exp[3*t] + x)) + Exp[2*t]*x/((-Exp[3*t] + x)); a = Table[ CoefficientList[FullSimplify[ExpandAll[(n!*(-1 + x)^(n + 1)/x)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], x], {n, 0, 10}]; Flatten[a] (End)
Comments