A174678 Sequence A154647 adjusted to leading ones:t(n,m)=A154647(n,m)-A154647(n,0)+1.
1, 1, 1, 1, 18, 1, 1, 165, 165, 1, 1, 1268, 3406, 1268, 1, 1, 9113, 51963, 51963, 9113, 1, 1, 63718, 692343, 1434448, 692343, 63718, 1, 1, 440989, 8557937, 32284381, 32284381, 8557937, 440989, 1, 1, 3044904, 101118220, 641504248, 1151047254
Offset: 0
Examples
{1}, {1, 1}, {1, 18, 1}, {1, 165, 165, 1}, {1, 1268, 3406, 1268, 1}, {1, 9113, 51963, 51963, 9113, 1}, {1, 63718, 692343, 1434448, 692343, 63718, 1}, {1, 440989, 8557937, 32284381, 32284381, 8557937, 440989, 1}, {1, 3044904, 101118220, 641504248, 1151047254, 641504248, 101118220, 3044904, 1}, {1, 21045105, 1161583479, 11747799063, 34632930507, 34632930507, 11747799063, 1161583479, 21045105, 1}, {1, 145766138, 13106374045, 203453014612, 928796814694, 1514068325056, 928796814694, 203453014612, 13106374045, 145766138, 1}
Crossrefs
Programs
-
Mathematica
p[x_, n_] = (1 - x)^(n + 1)*(Sum[(4*k + 1)^n*x^k, {k, 0, Infinity}] + Sum[(4*k + 3)^n*x^k, {k, 0, Infinity}])/2; a = Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; t[n_, m_] := a[[n + 1]][[m + 1]]; Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}]; Flatten[%]
Comments