A154671 Averages of twin prime pairs k such that k*3 and k/3 are squares.
12, 108, 192, 432, 1452, 2028, 3468, 4800, 10092, 18252, 106032, 139968, 221952, 284592, 299568, 355008, 549552, 618348, 720300, 786432, 823728, 961068, 995328, 1009200, 1138368, 1190700, 1291008, 1529388, 1537968, 1651692, 1948908
Offset: 1
Keywords
Examples
12*3 = 36 = 6^2, 12/3 = 4 = 2^2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A154670.
Programs
-
Mathematica
lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1],s=(n*3)^(1/2); If[Floor[s]==s,AppendTo[lst,n]]],{n,6,10!,6}]; lst...and/or... lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1],s=(n/3)^(1/2); If[Floor[s]==s,AppendTo[lst,n]]],{n,6,10!,6}]; lst Select[Mean/@Select[Partition[Prime[Range[150000]],2,1],#[[2]]-#[[1]] == 2&],AllTrue[{Sqrt[#/3],Sqrt[3#]},IntegerQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 06 2015 *)
-
PARI
for(i=1,999, isprime(12*i^2+1) && isprime(12*i^2-1) && print1(12*i^2",")) \\ M. F. Hasler, Jan 15 2009
Formula
a(n) = 12*A154331(n)^2. - M. F. Hasler, Jan 15 2009