A162264 a(n) = (2*n^3 + 5*n^2 + 7*n)/2.
7, 25, 60, 118, 205, 327, 490, 700, 963, 1285, 1672, 2130, 2665, 3283, 3990, 4792, 5695, 6705, 7828, 9070, 10437, 11935, 13570, 15348, 17275, 19357, 21600, 24010, 26593, 29355, 32302, 35440, 38775, 42313, 46060, 50022, 54205, 58615, 63258
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A154681.
Programs
-
Mathematica
LinearRecurrence[{4, -6, 4, -1}, {7, 25, 60, 118}, 50] (* or *) CoefficientList[Series[(7-3*x+2*x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Mar 05 2012 *)
Formula
Row sums from A154681: a(n) = Sum_{m=1..n} (2*m*n + m + n + 3).
From Vincenzo Librandi, Mar 05 2012: (Start)
G.f.: x*(7 - 3*x + 2*x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
Extensions
New name from Vincenzo Librandi, Mar 05 2012