cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A363288 a(n) = (2*n^3 - n^2 + 3*n - 2)/2.

Original entry on oeis.org

1, 8, 26, 61, 119, 206, 328, 491, 701, 964, 1286, 1673, 2131, 2666, 3284, 3991, 4793, 5696, 6706, 7829, 9071, 10438, 11936, 13571, 15349, 17276, 19358, 21601, 24011, 26594, 29356, 32303, 35441, 38776, 42314, 46061, 50023, 54206, 58616, 63259, 68141, 73268, 78646, 84281
Offset: 1

Views

Author

Wesley Ivan Hurt, May 25 2023

Keywords

Comments

For n >= 3, a(n) is the sum of all multiples of n XOR n-1 that are <= n^2.

Crossrefs

Programs

  • Magma
    [(2*n^3 - n^2 + 3*n - 2)/2 : n in [1..50]];
    
  • Mathematica
    Table[(2 n^3 - n^2 + 3 n - 2)/2, {n, 100}]
    LinearRecurrence[{4, -6, 4, -1}, {1, 8, 26, 61}, 50]
  • PARI
    a(n) = n^3 - 1 + (-n^2 + 3*n)/2 \\ Winston de Greef, Jun 01 2023

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = A002411(n) + (n-1)*A000217(n+1) - A046092(n-1).
a(n) = A162264(n-1) + 1 for n >= 2. - Hugo Pfoertner, Jun 02 2023
G.f.: x*(1 - 5*x + 2*x^2 - 4*x^3)/(1 - x)^4. - Stefano Spezia, Jun 03 2023
Showing 1-1 of 1 results.