A154690 Triangle read by rows: T(n, k) = (2^(n-k) + 2^k)*binomial(n,k), 0 <= k <= n.
2, 3, 3, 5, 8, 5, 9, 18, 18, 9, 17, 40, 48, 40, 17, 33, 90, 120, 120, 90, 33, 65, 204, 300, 320, 300, 204, 65, 129, 462, 756, 840, 840, 756, 462, 129, 257, 1040, 1904, 2240, 2240, 2240, 1904, 1040, 257, 513, 2322, 4752, 6048, 6048, 6048, 6048, 4752, 2322, 513
Offset: 0
Examples
Triangle begins as: 2; 3, 3; 5, 8, 5; 9, 18, 18, 9; 17, 40, 48, 40, 17; 33, 90, 120, 120, 90, 33; 65, 204, 300, 320, 300, 204, 65; 129, 462, 756, 840, 840, 756, 462, 129; 257, 1040, 1904, 2240, 2240, 2240, 1904, 1040, 257; 513, 2322, 4752, 6048, 6048, 6048, 6048, 4752, 2322, 513; 1025, 5140, 11700, 16320, 16800, 16128, 16800, 16320, 11700, 5140, 1025;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- A. Lakhtakia, R. Messier, V. K. Varadan, and V. V. Varadan, Use of combinatorial algebra for diffusion on fractals, Physical Review A, volume 34, Number 3 (1986) p. 2502, Fig. 3.
Crossrefs
Programs
-
Magma
A154690:= func< n,k | (2^(n-k)+2^k)*Binomial(n,k) >; [A154690(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 18 2025
-
Maple
A154690 := proc(n,m) binomial(n,m)*(2^(n-m)+2^m) ; end proc: # R. J. Mathar, Jan 13 2011
-
Mathematica
T[n_, m_]:= (2^(n-m) + 2^m)*Binomial[n,m]; Table[T[n,m], {n,0,12}, {m,0,n}]//Flatten
-
Python
from sage.all import * def A154690(n,k): return (pow(2,n-k)+pow(2,k))*binomial(n,k) print(flatten([[A154690(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 18 2025
Comments