A154702 Triangular sequence defined by T(n, m) = Coefficients(q(x,n) + x^(n-2)*q(1/x,n))/4, where q(x, n) = d^2*P(x, n)/dx^2 and p(x, n)=(x-1)^(n+1)*Sum_{k>=0} ((-1)^(n + 1)*k^n)*x^(k-1).
1, 7, 7, 36, 78, 36, 156, 624, 624, 156, 603, 4224, 7146, 4224, 603, 2157, 25281, 68322, 68322, 25281, 2157, 7318, 137622, 578130, 882340, 578130, 137622, 7318, 23938, 696970, 4433382, 9965710, 9965710, 4433382, 696970, 23938
Offset: 3
Examples
Triangle begins as: 1; 7, 7; 36, 78, 36; 156, 624, 624, 156; 603, 4224, 7146, 4224, 603; 2157, 25281, 68322, 68322, 25281, 2157; 7318, 137622, 578130, 882340, 578130, 137622, 7318; 23938, 696970, 4433382, 9965710, 9965710, 4433382, 696970, 23938;
Links
- G. C. Greubel, Rows n = 3..30 of triangle, flattened
- Roger L. Bagula, Fractal plot modulo two Mathematica code
Crossrefs
Cf. A037960.
Programs
-
Mathematica
p[x_, n_] := Sum[k!*StirlingS2[n, k]*(x - 1)^(n - k), {k, 1, n}]; (* or p[x_, n_]:= (x-1)^(n+1)*Sum[((-1)^(n+1)*k^n)*x^k, {k, 0, Infinity}]/x; *) q[x_, n_]:= D[p[x, n], {x, 2}]; f[n_]:= CoefficientList[FullSimplify[ExpandAll[q[x, n]]], x]; Table[(f[n] + Reverse[f[n]])/4, {n, 1, 10}]//Flatten (* modified by G. C. Greubel, May 08 2019 *)
Extensions
Edited by G. C. Greubel, May 08 2019
Comments