cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A154711 Squares such that square-+5 are primes.

Original entry on oeis.org

36, 144, 1296, 5184, 6084, 28224, 39204, 41616, 116964, 186624, 207936, 242064, 285156, 345744, 352836, 443556, 527076, 571536, 617796, 646416, 992016, 1028196, 1468944, 1483524, 1557504, 1572516, 1602756, 1726596, 1806336, 2178576
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n^2;If[PrimeQ[p-5]&&PrimeQ[p+5],AppendTo[lst,p]],{n,6,8!,6}];lst
    Select[Range[1500]^2,AllTrue[#+{5,-5},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 20 2018 *)

A154712 (6*n)^2 = A154711.

Original entry on oeis.org

1, 2, 6, 12, 13, 28, 33, 34, 57, 72, 76, 82, 89, 98, 99, 111, 121, 126, 131, 134, 166, 169, 202, 203, 208, 209, 211, 219, 224, 246, 252, 259, 301, 302, 317, 348, 383, 387, 394, 436, 439, 511, 512, 527, 572, 574, 642, 666, 667, 677, 726, 763, 769, 779, 792, 818
Offset: 1

Views

Author

Keywords

Comments

A154711 Squares such that square-+5 are primes.

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n^2;If[PrimeQ[p-5]&&PrimeQ[p+5],AppendTo[lst,(p^(1/2))/6]],{n,6,8!,6}];lst
    Sqrt[#]/6&/@Select[Range[5000]^2,AllTrue[#+{5,-5},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 20 2018 *)

A154713 Cubes such that cube-+5 are primes.

Original entry on oeis.org

8, 1728, 110592, 287496, 474552, 2000376, 7077888, 34012224, 191102976, 401947272, 631628712, 5890514616, 14996130696, 15550119936, 19421724672, 32339798856, 35158608576, 62949797352, 68518346688, 76657300992
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n^3;If[PrimeQ[p-5]&&PrimeQ[p+5],AppendTo[lst,p]],{n,2,2*7!,2}];lst
    Select[Range[4300]^3,And@@PrimeQ[#+{5,-5}]&] (* Harvey P. Dale, Jun 19 2012 *)

Formula

A087696 INTERSECT A000578. [From R. J. Mathar, Jan 15 2009]
Showing 1-3 of 3 results.