A154739 Decimal expansion of sqrt(1 - 1/sqrt(2)), the abscissa of the point of bisection of the arc of the unit lemniscate (x^2 + y^2)^2 = x^2 - y^2 in the first quadrant.
5, 4, 1, 1, 9, 6, 1, 0, 0, 1, 4, 6, 1, 9, 6, 9, 8, 4, 3, 9, 9, 7, 2, 3, 2, 0, 5, 3, 6, 6, 3, 8, 9, 4, 2, 0, 0, 6, 1, 0, 7, 2, 0, 6, 3, 3, 7, 8, 0, 1, 5, 4, 4, 4, 6, 8, 1, 2, 9, 7, 0, 9, 5, 6, 5, 2, 9, 8, 8, 9, 7, 3, 5, 4, 1, 0, 1, 2, 6, 6, 6, 4, 7, 7, 8, 2, 6, 1, 4, 9, 5
Offset: 0
Examples
0.541196100146196984399723205366...
References
- C. L. Siegel, Topics in Complex Function Theory, Volume I: Elliptic Functions and Uniformization Theory, Wiley-Interscience, 1969, page 5.
Links
Crossrefs
Programs
-
Mathematica
nmax = 1000; First[ RealDigits[ Sqrt[ 1 - 1/Sqrt[2] ], 10, nmax] ]
-
PARI
sqrt(1 - 1/sqrt(2)) \\ G. C. Greubel, Sep 23 2017
-
PARI
polrootsreal(2*x^4-4*x^2+1)[3] \\ Charles R Greathouse IV, Feb 04 2025
Formula
From Amiram Eldar, Nov 22 2024: (Start)
Equals Product_{k>=0} (1 - (-1)^k/(4*k+2)) = Product_{k>=1} (1 + (-1)^k/A016825(k)). (End)
Extensions
Offset corrected by R. J. Mathar, Feb 05 2009
Comments