A154743 Decimal expansion of 2^(1/4) - 2^(-1/4), the ordinate of the point of bisection of the arc of the unit lemniscate (x^2 + y^2)^2 = x^2 - y^2 in the first quadrant.
3, 4, 8, 3, 1, 0, 6, 9, 9, 7, 4, 9, 0, 0, 6, 5, 2, 3, 6, 8, 6, 3, 7, 4, 4, 9, 4, 3, 2, 7, 2, 6, 1, 0, 2, 0, 2, 5, 2, 9, 3, 7, 8, 3, 0, 1, 0, 7, 0, 3, 2, 9, 0, 2, 2, 0, 5, 7, 7, 6, 1, 3, 8, 7, 4, 4, 5, 4, 1, 9, 1, 3, 2, 7, 3, 0, 1, 4, 9, 2, 0, 0, 5, 6, 4, 5, 7, 3, 4, 0, 3
Offset: 0
Examples
0.348310699749006523686374494327...
References
- C. L. Siegel, Topics in Complex Function Theory, Volume I: Elliptic Functions and Uniformization Theory, Wiley-Interscience, 1969, page 5
Links
Crossrefs
Programs
-
Magma
[2^(1/4) - 2^(-1/4)]; // G. C. Greubel, Nov 05 2017
-
Mathematica
nmax = 1000; First[ RealDigits[ 2^(1/4) - 2^(-1/4), 10, nmax] ]
-
PARI
sqrtn(2, 4) - sqrtn(2, -4) \\ Michel Marcus, Dec 10 2016
-
PARI
polrootsreal(2*x^4+8*x^2-1)[2] \\ Charles R Greathouse IV, Nov 07 2017
Extensions
Offset corrected by R. J. Mathar, Feb 05 2009
Comments