A154797 Odd partition numbers of even numbers.
1, 5, 11, 77, 135, 231, 385, 627, 1575, 8349, 17977, 26015, 75175, 147273, 281589, 386155, 526823, 966467, 3087735, 5392783, 9289091, 20506255, 44108109, 56634173, 72533807, 241265379, 304801365, 952050665, 1482074143, 6620830889
Offset: 1
Keywords
Examples
The odd number 5 is in the sequence as the partition number of the even number 4: (4, 3+1, 2+2, 2+1+1, 1+1+1+1). - _Emeric Deutsch_, Aug 02 2009
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
aa:= proc(n, i) if n=0 then 1 elif n<0 or i=0 then 0 else aa(n,i):= aa(n, i-1) +aa(n-i, i) fi end: a:= proc(n) local k; if n>1 then a(n-1) fi; for k from `if`(n=1, 0, b(n-1)+2) by 2 while irem(aa(k, k), 2)=0 do od; b(n):= k; aa(k, k) end: seq(a(n), n=1..40); # Alois P. Heinz, Jul 28 2009 with(combinat): a := proc (n) if `mod`(numbpart(2*n), 2) = 1 then numbpart(2*n) else end if end proc: seq(a(n), n = 0 .. 70); # Emeric Deutsch, Aug 02 2009
-
Mathematica
Select[PartitionsP[2*Range[0,100]],OddQ] (* Harvey P. Dale, Nov 30 2014 *)
Extensions
More terms from Alois P. Heinz, Jul 28 2009
Comments