cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A154799 Records in A154804.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 19, 20, 21, 24, 28, 31, 33, 41, 42, 44, 52, 58, 69, 73, 76, 83, 92, 98, 115, 129, 138, 139, 154, 164, 165, 166, 172, 190, 198, 218, 223, 241, 268, 274, 292, 304, 330, 331, 341, 362, 394, 434, 447, 448, 466, 478
Offset: 1

Views

Author

Omar E. Pol, Feb 01 2009

Keywords

Crossrefs

Programs

  • Maple
    read("transforms") ; A008578 := proc(n) RETURN( n=1 or isprime(n) ) ; end : A154804 := proc(n) local a,d; a := 0 ; for d from 1 to n-1 do if A008578(n-d) and A008578(n+d) then a := a+1; fi; od: a ; end: a804 := [seq(A154804(n),n=1..5000)] ; r := RECORDS(a804)[1] ; # R. J. Mathar, Mar 14 2009

Extensions

More terms from R. J. Mathar, Mar 14 2009
a(53) and beyond from Michael S. Branicky, Dec 11 2024

A154891 Where records occurs in A154804.

Original entry on oeis.org

1, 2, 4, 9, 12, 21, 24, 30, 42, 45, 57, 60, 75, 84, 90, 105, 135, 150, 165, 195, 210, 255, 315, 330, 390, 420, 525, 630, 735, 825, 840, 945, 1050, 1155, 1365, 1575, 1680, 1785, 1995, 2100, 2145, 2205, 2310, 2625, 2730, 3045, 3255, 3465, 3990, 4095, 4515, 4620
Offset: 1

Views

Author

Omar E. Pol, Feb 01 2009

Keywords

Crossrefs

Programs

  • Maple
    A008578 := proc(n) RETURN( n=1 or isprime(n) ) ; end : A154804 := proc(n) local a,d; a := 0 ; for d from 1 to n-1 do if A008578(n-d) and A008578(n+d) then a := a+1; fi; od: a ; end: a804 := [seq(A154804(n),n=1..4000)] ; r := RECORDS(a804)[2] ; # R. J. Mathar, Mar 14 2009

Extensions

More terms from R. J. Mathar, Mar 14 2009
a(50) and beyond from Michael S. Branicky, Dec 11 2024

A341973 Number of partitions of n into 2 distinct primes (counting 1 as a prime).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 2, 1, 2, 0, 3, 1, 3, 1, 2, 0, 4, 1, 2, 0, 2, 0, 4, 1, 3, 1, 3, 0, 4, 0, 2, 1, 3, 0, 5, 1, 4, 1, 3, 0, 6, 1, 4, 0, 3, 0, 6, 1, 3, 0, 3, 0, 7, 1, 3, 1, 5, 0, 6, 0, 3, 1, 5, 0, 7, 1, 5, 1, 5, 0, 7, 0, 5, 1, 4, 0, 9, 1, 4, 0, 4, 0, 10, 1, 4, 0, 4, 0, 7
Offset: 3

Views

Author

Ilya Gutkovskiy, Feb 24 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; series(`if`(n=0, 1,
         `if`(i<0, 0, (p-> `if`(p>n, 0, x*b(n-p, i-1)))(
         `if`(i=0, 1, ithprime(i)))+b(n, i-1))), x, 3)
        end:
    a:= n-> coeff(b(n, numtheory[pi](n)), x, 2):
    seq(a(n), n=3..96);  # Alois P. Heinz, Feb 24 2021
  • Mathematica
    a[n_] := Select[IntegerPartitions[n, {2}, Join[{1},
        Prime[Range[PrimePi[n-1]]]]], #[[1]] != #[[2]]&] // Length;
    a /@ Range[3, 100] (* Jean-François Alcover, Jul 13 2021 *)

Formula

a(n) = A117929(n) + A010051(n-1). - R. J. Mathar, Oct 01 2021
Showing 1-3 of 3 results.