cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154807 Numbers with 5n binary digits where every run length is 5, written in binary.

Original entry on oeis.org

11111, 1111100000, 111110000011111, 11111000001111100000, 1111100000111110000011111, 111110000011111000001111100000, 11111000001111100000111110000011111, 1111100000111110000011111000001111100000, 111110000011111000001111100000111110000011111
Offset: 1

Views

Author

Omar E. Pol, Jan 25 2009

Keywords

Comments

A154808 written in base 2.

Examples

			n ... a(n) ........................ A154808(n)
1 ... 11111 ....................... 31
2 ... 1111100000 .................. 992
3 ... 111110000011111 ............. 31775
4 ... 11111000001111100000 ........ 1016800
5 ... 1111100000111110000011111 ... 32537631
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[11111/((x - 1) (x + 1) (100000 x - 1)), {x, 0, 10}], x] (* Vincenzo Librandi, Apr 22 2014 *)
    LinearRecurrence[{100000,1,-100000},{11111,1111100000,111110000011111},20] (* Harvey P. Dale, Aug 08 2023 *)
  • PARI
    Vec(11111*x/((x-1)*(x+1)*(100000*x-1)) + O(x^100)) \\ Colin Barker, Apr 20 2014

Formula

From Colin Barker, Apr 20 2014: (Start)
a(n) = (-100001-99999*(-1)^n+2^(6+5*n)*3125^(1+n))/1800018.
a(n) = 100000*a(n-1)+a(n-2)-100000*a(n-3).
G.f.: 11111*x / ((x-1)*(x+1)*(100000*x-1)). (End)

Extensions

More terms from Colin Barker, Apr 20 2014