A154811 a(n) = Fibonacci(2*n+1) mod 9.
1, 2, 5, 4, 7, 8, 8, 7, 4, 5, 2, 1, 1, 2, 5, 4, 7, 8, 8, 7, 4, 5, 2, 1, 1, 2, 5, 4, 7, 8, 8, 7, 4, 5, 2, 1, 1, 2, 5, 4, 7, 8, 8, 7, 4, 5, 2, 1, 1, 2, 5, 4, 7, 8, 8, 7, 4, 5, 2, 1, 1, 2, 5, 4, 7, 8, 8, 7, 4, 5, 2, 1
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,-1,1).
Programs
-
Mathematica
Mod[Fibonacci[Range[1,151,2]],9] (* Harvey P. Dale, Jul 10 2018 *)
-
PARI
a(n)=fibonacci(n%12*2+1)%9 \\ Charles R Greathouse IV, Dec 21 2011
Formula
From R. J. Mathar, Apr 10 2009: (Start)
a(n) = a(n-1) - a(n-6) + a(n-7).
G.f.: -(1 + x + 3*x^2 - x^3 + 3*x^4 + x^5 + x^6)/((x - 1)*(x^2 + 1)*(x^4 - x^2 + 1)). (End)
Extensions
Edited by R. J. Mathar, Jan 23 2009
Typo in A-number in first formula corrected by R. J. Mathar, Feb 23 2009
Comments