cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154870 Period 6: repeat [7, 5, 1, -7, -5, -1].

Original entry on oeis.org

7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1
Offset: 0

Views

Author

Paul Curtz, Jan 16 2009

Keywords

Comments

The sequence b(n) = (-A153130(n)) mod 9 = A153130(n+3) = A146501(n-1) = 8, 7, 5, 1, 2, 4,... has period length 6. This here is a(n)=b(n)-A153130(n).
a(n) is (-1)^(n+1) * numerator of F(n) where F(n) = f(F(n-1)) starting from F(0) = -7/4 and step f(z) = z^2 -29/16. - Nicolas Bělohoubek, Nov 20 2024

Crossrefs

Programs

Formula

a(n) = -a(n-3) for n>2; G.f.: (7+5*x+x^2)/((1+x)*(1-x+x^2)). [R. J. Mathar, Jan 23 2009]
a(n) = cos(n*Pi) + 6*cos(n*Pi/3) + 2*sqrt(3)*sin(n*Pi/3). - Wesley Ivan Hurt, Jun 20 2016

Extensions

Edited and extended by R. J. Mathar, Jan 23 2009